

APPENDIX C

Development of Risk-Based Screening Levels

DEVELOPMENT OF RISK-BASED SCREENING LEVELS

Former Pechiney Cast Plate, Inc. Facility
3200 Fruitland Avenue
Vernon, California

Prepared for:

Pechiney Cast Plate, Inc.

Prepared by:

AMEC Geomatrix, Inc. 510 Superior Avenue, Suite 200 Newport Beach, California 92663 (949) 642-0245

August 10, 2009

Project No. 10627.003

DEVELOPMENT OF RISK-BASED SCREENING LEVELS

Former Pechiney Cast Plate, Inc. Facility 3200 Fruitland Avenue Vernon, California

August 10, 2009 Project 10627.003

This report was prepared by the staff of AMEC Geomatrix, Inc., under the supervision of the Senior Toxicologists whose signatures appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Todd Bernhardt Senior Toxicologist

Ann Holbrow Senior Toxicologist

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1
2.0	TOXIC	CITY ASSESSMENT	1
	2.1	Total Petroleum Hydrocarbons	2
		2.1.1 Development of Toxicity Criteria for TPH by the Apportion Method	
		2.1.2 Development of "Worst Case" Toxicity Criteria for TPH	4
3.0	RISK-	BASED SCREENING LEVELS FOR SOIL	5
	3.1	Risk-Based Screening Levels for Soil (Non-Lead Exposures)	6
	3.2	Risk-Based Screening Levels for Exposure to Lead in Soil	7
4.0	RISK-	BASED SCREENING LEVELS FOR SOIL VAPOR	8
	4.1	Risk-Based Screening Levels for Movement of VOCs to Indoor Air	8
	4.2	Risk-Based Screening Levels for Soil Vapor for Movement of VOCs to Ambie Air	nt
	4.3	Risk-Based Screening Levels for TPH as Stoddard Solvent in Soil Vapor	.12
5.0	RISK-	BASED SCREENING LEVELS FOR GROUNDWATER	.13
	5.1	Risk-Based Screening Levels for TPH as Stoddard Solvent in Groundwater	.13
6.0	UNCE	RTAINTY ANALYSIS	.14
	6.1	Environmental Fate and Transport	.14
	6.2	Exposure Assumptions and Parameters	.14
	6.3	Toxicity Criteria	.15
7.0	REFE	RENCES	. 17
		TABLES	
Table	C-1	Toxicity Criteria for Chemicals of Potential Concern	
Table		Apportion Method Toxicity Criteria for TPH Mixtures	
Table Table		Worst Case Toxicity Criteria for TPH Mixtures Physicochemical Constants for Chemicals of Potential Concern	
Table		Exposure Parameters Used in Developing Risk-Based Screening Levels	for
		Outdoor Commercial/Industrial Workers	
Table	C-6	Exposure Parameters Used in Developing Risk-Based Screening Levels to	or
Table	C-7	Construction Workers Risk-Based Screening Levels for Chemicals of Potential Concern in Soil -	_
Table	0 1	Outdoor Commercial/Industrial Worker	
Table	C-8	Risk-Based Screening Levels for Chemicals of Potential Concern in Soil - Construction Worker	-
Table	C-9	Health-Based Screening Levels for Lead in Soil	
Table	C-10	Exposure Parameters Used in Developing Risk-Based Screening Levels Indoor Commercial/Industrial Workers	for
Table	C-11	Risk-Based Screening Levels for Soil Vapor – Indoor Commercial/Industri Worker	ial

Table C-12	Risk-Based Screening Levels for Soil Vapor – Outdoor
	Commercial/Industrial Worker Exposure to Ambient Air
Table C-13	Risk-Based Screening Levels for Soil Vapor – Construction Worker
	Exposure to Ambient Air
Table C-14	Risk-Based Screening Levels for TPH Mixtures in Soil Vapor
Table C-15	Risk-Based Screening Levels for TPH Mixtures in Groundwater

ATTACHMENTS

Attachment A-1 Attachment A-2	Additional Equations Used in Soil Vapor Screening Level Calculations Risk Assessment Assumptions
Attachment B-1	Revised California Human Health Screening Level for Lead, Developed Using U.S. EPA's Adult Lead Model (ALM), Outdoor Commercial/Industrial Worker
Attachment B-2	Lead Risk Assessment Spreadsheet, California Department of Toxic
Attachment C-1	Substances Control, Construction Worker Soil Vapor Attenuation Factors for Vapor Intrusion – Indoor
Attachment D-1	Commercial/Industrial Worker Summary of Input Parameters – Risk-Based Screening Levels for Vapor
Attachment D-2	Intrusion from Groundwater Risk-Based Screening Levels for Vapor Intrusion from Groundwater –
	Indoor Commercial/Industrial Worker

DEVELOPMENT OF RISK-BASED SCREENING LEVELS

Former Pechiney Cast Plate, Inc. Facility 3200 Fruitland Avenue Vernon, California

1.0 INTRODUCTION

Risk-based screening criteria were used to evaluate potential human health risks associated with chemical exposure. Risk-based screening levels (RBSLs) were developed using the methodology presented by the California Environmental Protection Agency (Cal-EPA) Office of Environmental Health Hazard Assessment (OEHHA) for California Human Health Screening Levels (CHHSLs) (2005), the Johnson and Ettinger (1991) model, exposure parameters recommended by DTSC (2005), and recent guidance on lead and total petroleum hydrocarbons (TPH) (OEHHA, 2009a; DTSC, 2009).

A site conceptual model describing the exposure assessment for former Pechiney Cast Plate, Inc. Facility (the Site) is presented in the Feasibility Study (FS) (AMEC, 2009). The receptors identified included a commercial/industrial worker (indoor and outdoor) and a construction worker (outdoor). This appendix presents the toxicity assessment, the development of RBSLs for each receptor for each medium of concern (i.e., soil, soil vapor, and groundwater; as appropriate), and an uncertainty analysis.

2.0 TOXICITY ASSESSMENT

The toxicity criteria for cancer risks and noncancer adverse health effects used in deriving the RBSLs are presented in Table C-1 with the exception of total petroleum hydrocarbon (TPH) mixtures, which are addressed in Section 2.1. The hierarchy of references used for selecting these toxicity criteria is as follows:

- 1. OEHHA Toxicity Criteria Database, 2009b, or OEHHA Chronic Reference Exposure Levels, 2008;
- 2. United States Environmental Protection Agency (U.S. EPA) Integrated Risk Information System (IRIS) on-line database, 2009a; and
- 3. Other U.S. EPA or U.S. Department of Health and Human Services toxicity criteria, as recommended or provided for specific chemicals in U.S. EPA, 2009b, Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites, April, or U.S. EPA, 2004c, Region IX Preliminary Remediation Goals (PRGs). The other U.S. sources include Provisional Peer-Reviewed Toxicity Values (PPRTVs), values from the Agency for Toxic Substances & Disease Registry (ATSDR), values from

the National Center for Environmental Assessment (NCEA), and values from U.S. EPA Health Effects Assessment Summary Tables (HEAST).

In the event that an inhalation reference dose or slope factor was not available, route extrapolation from oral exposure was used in the calculations, unless clear toxicological evidence indicates this extrapolation is inappropriate for a specific chemical. Toxicity criteria for dermal exposure were derived using the oral reference dose (RfD) or cancer slope factor (CSF) without adjustment for reduced gastrointestinal absorption efficiency, consistent with the approach used to derive most CHHSLs (OEHHA 2005). Surrogate toxicity criteria were used when no other criteria were available for a specific chemical. Specific surrogates were chosen based on similarities in chemical structure and expected toxicity. Surrogates used in this assessment are presented in Table C-1.

2.1 TOTAL PETROLEUM HYDROCARBONS

Various mixtures of TPH have been reported in shallow soil (surface to a depth of 15 feet below ground surface [bgs]) at the Site including: TPH as gasoline; TPH as diesel; TPH as motor oil; TPH as Stoddard solvent; total extractable petroleum hydrocarbons (TEPH); total recoverable petroleum hydrocarbons (TRPH); undifferentiated TPH; and TPH as specific hydrocarbon ranges c6-c10, c10-c20, c10-c28, and c21-c28. TPH as Stoddard solvent has also been reported in shallow soil vapor (5 and 15 feet bgs) and groundwater (at 150 feet bgs). However, toxicity criteria for use with these TPH mixtures are not available from the DTSC, OEHHA, or U.S. EPA. DTSC recommends using toxicity criteria specific to the following six groups of aliphatic and aromatic hydrocarbons to evaluate the potential risks from TPH exposure (DTSC, 2009):

- c5-c8 aliphatics
- c6-c8 aromatics
- c9-c18 aliphatics
- c9-c16 aromatics
- c19-c32 aliphatics
- c17-c32 aromatics

As described herein, toxicity criteria were developed for the TPH mixtures detected at the Site by 1) determining the aliphatic and aromatic hydrocarbon ranges typically associated with each mixture, 2) using this information to calculate weighted criteria from the aforementioned groups, and 3) summing these weighted criteria into a single criterion for each mixture (apportion method). For comparative purposes, "worst case" toxicity criteria were also developed by assuming each TPH mixture is composed of 50% aliphatic and 50% aromatic

hydrocarbons (DTSC, 2009), and using the most health-protective toxicity criteria of the DTSC hydrocarbon groups associated with each mixture (worst case method). Toxicity criteria were not derived for TRPH and undifferentiated TPH as the specific hydrocarbon ranges associated with these non-discrete TPH mixtures are not understood. In most cases, other TPH analytical data that could be quantitatively evaluated were available for soil samples analyzed for TRPH and undifferentiated TPH.

2.1.1 Development of Toxicity Criteria for TPH by the Apportion Method

The process followed to develop toxicity criteria for TPH mixtures using weighting or apportioning for the specific DTSC hydrocarbon groups involved the steps described below.

Estimate percentages of the DTSC hydrocarbon groups occurring in each mixture.
 To estimate these percentages, the carbon chains and aliphatic/aromatic composition of each TPH mixture was first determined from ATSDR (1999), California Regional Water Quality Control Board, San Francisco Bay Region (SFRWQCB, 2008), Curtis and Thompkins (2009), and/or U.S. EPA (1996b). The percentages of the DTSC hydrocarbon groups occurring in each mixture was then estimated using the following equation (Equation 1):

$$P_{x} = \frac{HC_{x}}{HC} \times Ax \tag{1}$$

Where:

 P_x = percentage of DTSC hydrocarbon group (x) occurring in TPH

mixture

 HC_x = number of carbon chain groups from DTSC hydrocarbon group

occurring in TPH mixture (e.g., C5 to C8 would be 4)

HC = total number of carbon chain groups in TPH mixture (e.g., C5 to

C12 would be 8)

 A_x = aliphatic (or aromatic) percentage in TPH mixture

The carbon chains and aliphatic/aromatic percentages assigned to each TPH mixture, and the resulting calculated percentages of DTSC hydrocarbon groups occurring in each mixture, are presented in Table C-2.

2. Normalize the percentages of DTSC hydrocarbon groups as needed. Because DTSC recommends that individual chemicals of potential concern (COPCs) (e.g., benzene, toluene, ethylbenzene, and xylenes [BTEX]) be used to evaluate c6-c8 aromatics, contributions from this hydrocarbon group were excluded from TPH toxicity criteria development. Such COPCs have been analyzed for at the Site and would be evaluated separately with RBSLs for the individual COPCs. As a result, for the TPH mixtures consisting of some fraction of c6-c8 aromatics (TPH as gasoline, TPH as Stoddard solvent, and c6-c10 hydrocarbons), the contributions of the remaining hydrocarbon groups occurring in those mixtures (c5-c8 aliphatics, c9-c18 aliphatics, and c9-c16 aromatics) would not add up to 100% (Table C-2). To address this issue, the percentages of these groups were normalized. Similarly,

data normalization was also required for the hydrocarbon groups occurring in TPH as motor oil and TEPH. The calculated percentages of these groups did not add up to 100 percent because both mixtures contain c33+ hydrocarbons for which no toxicity criteria have been assigned. Calculated percentages were normalized in these cases using the following equation (Equation 2):

$$NP_{x} = \frac{P_{x}}{\sum P_{x}}$$
 (2)

Where: NP_x = normalized percentage of DTSC hydrocarbon group occurring in TPH mixture

 ΣP_x = percentage sum of all DTSC hydrocarbon groups occurring in TPH mixture

All other terms previously defined.

Normalized percentages for the DTSC hydrocarbon groups occurring in each mixture are presented in Table C-2. Prior to estimating the inhalation RfDs and reference concentrations (RfC) for TPH as diesel, TEPH, c10-c20 hydrocarbons and c10-c28 hydrocarbons, the normalized percentages estimated for the DTSC hydrocarbon groups occurring in these mixtures were re-calculated to account for the low volatility and/or lack of inhalation toxicity criteria of the c19-c32 aliphatics and c17-c32 aromatics. The normalized percentages were re-calculated excluding these two groups.

3. Calculation of toxicity criteria for each TPH mixture. In the final step, the toxicity criteria were estimated by summing the DTSC hydrocarbon group criteria, weighted by the percentages estimated in the previous two steps (Equation 3):

$$RfD = \sum (NP_x \times RfD_x)$$
 (3)

Where: RfD = RfD (or reference concentration [RfC]) for TPH mixture (mg/kg-day) (or μ g/m³ for RfC)

 $RfD_x = RfD$ (or RfC) for DTSC hydrocarbon group (mg/kg-day or μ g/m³)

All other terms previously defined

The RfDs and RfCs estimated for each TPH mixture by the apportion method are presented in Table C-2 and listed in Table C-1 as well.

2.1.2 Development of "Worst Case" Toxicity Criteria for TPH

For comparative purposes, a set of worst case criteria were also estimated for the mixtures of TPH detected at the Site, in soil, soil vapor and groundwater samples, by assuming each

mixture consisted of 50% aliphatic and 50% aromatic hydrocarbons (DTSC, 2009) and using the most health-protective toxicity criteria for the hydrocarbon groups associated with each mixture. This assumption is conservative, given that the industry-grade composition of each mixture, as suggested by ATSDR (1999), consists of approximately 65-80% aliphatic hydrocarbons (which are less toxic then aromatic hydrocarbons). Furthermore, once introduced into the environment, the effects of weathering contribute to a reduction in concentration of the lighter, more toxic hydrocarbons of each aliphatic/aromatic fraction.

The worst case toxicity criteria for TPH were calculated as follows (Equation 4):

$$RfD = (0.5 \times RfD_{al}) + (0.5 \times RfD_{ar}) \tag{4}$$

Where: RfD = RfD (or RfC) for TPH mixture (mg/kg-day or μ g/m³)

 RfD_{al} = Most health-protective RfD (or RfC) of the DTSC aliphatic hydrocarbon group within the TPH mixture (mg/kg-day or µg/m³)

 RfD_{ar} = Most health-protective RfD (or RfC) of the DTSC aromatic hydrocarbon group within the TPH mixture (mg/kg-day or μ g/m³)

The worst case RfDs and RfCs estimated for each TPH mixture are presented in Table C-3 and listed in Table C-1 as well.

3.0 RISK-BASED SCREENING LEVELS FOR SOIL

Future exposure for the outdoor commercial/industrial worker and the construction worker was assumed to be complete for chemicals in soil via incidental ingestion, dermal contact, and inhalation of airborne particulates or volatile organic compounds¹ (VOCs) in ambient air. Future exposure for the indoor commercial/industrial worker was assumed to be complete for VOCs moving from subsurface soil into indoor air. However, soil vapor is considered a more appropriate medium than soil for assessing potential vapor migration and shallow soil vapor data (collected at 5 or 15 feet bgs) were used to evaluate potential vapor migration from the vadose zone into indoor and ambient air and subsequent inhalation exposure.

RBSLs were developed for non-volatile chemicals in soil to be protective of outdoor commercial/industrial worker exposure to soil via incidental ingestion, dermal contact, and inhalation of airborne particulates. Additional RBSLs were developed for construction workers for these chemicals following the same methodology but using construction worker exposure

_

¹ Chemicals are identified as VOCs if the molecular weight is less than 200 grams per mole (g/mole) and the Henry's Law Constant is greater than 1x10⁻⁵ atmospheres—cubic meter per mole (atm-m³/mole).

parameters. Soil vapor data were used in place of soil data to evaluate potential vapor movement from the vadose zone into indoor and ambient air. RBSLs were developed for outdoor commercial/industrial workers and construction workers for the VOCs detected in soil to account for potential exposure via soil incidental ingestion and dermal contact. Lead was evaluated separately based on the unique health effects associated with this chemical.

3.1 RISK-BASED SCREENING LEVELS FOR SOIL (NON-LEAD EXPOSURES)

The equations used to develop the RBSLs for soil for both outdoor commercial/industrial workers and construction workers are presented below. RBSLs were developed to screen for both cancer risks (Equation 5) and noncancer adverse health effects (Equation 6). These equations consider exposure via incidental ingestion, dermal exposure, and inhalation of particulates (using a particulate emission factor [PEF]). For VOCs, the inhalation pathway component (third component of denominator in Equations 5 and 6) did not apply in the RBSL calculations.

$$RBSL_{soil-risk} = \frac{TR \times BW \times AT_{ca}}{ED \times EF \times \left[\left(\frac{IR_{s} \times CSF_{o}}{CF_{kg-mg}} \right) + \left(\frac{SAs \times SAF \times ABS \times CSF_{o}}{CF_{kg-mg}} \right) + \left(\frac{IHR_{a} \times CSF_{i}}{PEF} \right) \right]}$$
(5)

Where: RBSL_{soil-risk}= risk-based soil screening level for cancer risk (mg/kg)

TR = target cancer risk, 1 x 10⁻⁶ (unitless)

BW = body weight (kg)

 AT_{ca} = averaging time - cancer (days)

ED = exposure duration (yr)

EF = exposure frequency (days/yr)
IR_s = ingestion rate of soil (mg/day)

 CSF_o = oral cancer slope factor [(mg/kg-day)⁻¹]

 CF_{kg-mg} = conversion factor from kilograms to milligrams

SAs = exposed skin surface area (cm²)

SAF = soil-to-skin adherence factor (mg/cm²) ABS = dermal absorption factor (unitless)

 IHR_a = inhalation rate (m³/day)

 CSF_i = inhalation cancer slope factor [(mg/kg-day)⁻¹] PEF = particulate emission factor (m³ of air/kg of soil)

$$RBSL_{soil-haz} = \frac{THQ \times BW \times AT_{nc}}{ED \times EF \times \left[\left(\frac{1}{RfD_o} \times \frac{IR_s}{CF_{kg-mg}} \right) + \left(\frac{1}{RfD_o} \times \frac{SAs \times SAF \times ABS}{CF_{kg-mg}} \right) + \left(\frac{1}{RfD_i} \times \frac{IHR_a}{PEF} \right) \right]}$$
(6)

Where: RBSL_{soil-haz}= risk-based soil screening level for noncancer hazard (mg/kg)

THQ = target hazard quotient, 1 (unitless) AT_{nc} = averaging time - noncancer (days)

RfD_o = oral reference dose (mg/kg-day) RfD_i = inhalation reference dose (mg/kg-day) All other terms previously defined

The toxicity criteria for cancer risks and noncancer adverse health effects used in deriving the RBSLs are presented in Table C-1. Chemical-specific dermal absorption factors used in deriving the RBSLs are presented in Table C-4. Values for exposure parameters used in the RBSL calculations are listed in Tables C-5 and C-6 for outdoor commercial/industrial workers and construction workers, respectively, as obtained from DTSC (2005).

The RBSLs developed to screen the chemical concentrations in soil at the Site and estimate potential outdoor commercial/industrial worker cancer risks and noncancer hazards from exposure to these concentrations are presented in Table C-7. The RBSLs developed to screen the chemical concentrations in soil at the Site and estimate potential construction worker cancer risks and noncancer hazards from exposure to these concentrations are presented in Table C-8.

3.2 RISK-BASED SCREENING LEVELS FOR EXPOSURE TO LEAD IN SOIL

Although a CSF has been published by OEHHA for lead (OEHHA, 2009b), noncarcinogenic health effects, particularly for children, occur at much lower concentrations than carcinogenic effects. Separate mathematical models, such as the U.S. EPA's Adult Lead Model (ALM) (U.S. EPA, 2005) and the LeadSpread model developed by the DTSC (1999), have been developed to evaluate these potential health concerns by estimating blood-lead levels resulting from contact with lead in various media (e.g., soil, air, food). The blood-lead level is of interest because most adverse human health effects are correlated in terms of blood-lead levels (e.g., a blood-lead level of "x" is associated with an increased incidence of adverse health effects). In contrast, risks and adverse health effects for other chemicals are correlated simply in terms of chemical intake.

The U.S. EPA's ALM and DTSC's LeadSpread model were used to develop health-based screening levels for outdoor commercial/industrial worker and construction worker exposure to total lead in soil that are protective of benchmark blood-lead levels established by the DTSC (1999) and OEHHA (2009a). For commercial/industrial workers, the health-based screening level was based on a 90th percentile estimate of a 1 microgram per deciliter (µg/dL) incremental change in the blood-lead level of the fetus of an adult worker (OEHHA, 2009a). For construction workers, the health-based screening level was based on a 99th percentile 10 µg/dL blood-lead level of concern (DTSC, 1999). Leadspread was used assuming construction work would not be performed by childbearing adults. Using the ALM, the health-based screening level for commercial/industrial workers was calculated using U.S. EPA-

recommended exposure parameters, with adjustments to the blood-lead geometric standard deviation, baseline blood-lead level, and exposure frequency of adult workers to be consistent with OEHHA recommendations (2009a). Using LeadSpread, the health-based screening level for construction workers was calculated using default background concentrations of lead in other environmental media (e.g., air, food, water) and default exposure parameters recommended by DTSC for use with LeadSpread, with a few exceptions. Values used in the derivation of the other RBSLs were used in place of the default LeadSpread values for exposed skin surface area and soil-to-skin adherence factor; the default LeadSpread values for these parameters are intended for commercial/industrial workers and adult residents, respectively. Finally, a soil ingestion rate equivalent to 50 percent of the ingestion rate used in the derivation of the other RBSLs was used for construction workers. This adjustment is consistent with recommended soil ingestion rates by DTSC for use with LeadSpread for other receptors (i.e., residents and workers). Attachment B-1 presents the ALM calculations and Attachment B-2 presents the LeadSpread calculations used in the derivation of the healthbased screening levels for outdoor commercial/industrial workers and construction workers, respectively. The resulting health-based screening levels are summarized in Table C-9.

4.0 RISK-BASED SCREENING LEVELS FOR SOIL VAPOR

As described above, future exposure for the indoor commercial/industrial worker was assumed to be complete for chemicals moving from subsurface vadose zone soil into indoor air. Similarly, for the outdoor commercial/industrial worker and construction worker assumed to spend 100 percent of their time outdoors, future exposure was considered complete for chemicals moving from subsurface vadose zone soil into ambient air. RBSLs were developed for soil vapor concentrations to evaluate vapor movement from the vadose zone into indoor or ambient air.

4.1 RISK-BASED SCREENING LEVELS FOR MOVEMENT OF VOCS TO INDOOR AIR

This section presents the derivation of RBSLs for movement of VOCs in shallow soil vapor to indoor air for indoor commercial/industrial workers. RBSLs were not derived for construction workers as these receptors are not considered to spend sufficient time indoors to warrant evaluation via this exposure pathway. The soil vapor RBSLs developed for indoor air exposures were based on the methodology for soil vapor CHHSLs for current, common slab on grade building construction practices in California, in which a building foundation is separated from underlying soil by a layer of compacted, fine-grained cohesive soil and a layer of sub-slab gravel (OEHHA, 2005). Transport of chemical vapors from shallow soil vapor into indoor air is predicted by the Johnson and Ettinger (1991) model. The process followed to

develop these RBSLs is based on the process presented in Appendix B of the OEHHA guidance (2005) and involves three consecutive steps:

1. Calculation of target indoor air concentrations. The equations used to develop the target indoor air concentrations for indoor commercial/industrial workers are presented below, based on the equations presented in Appendix B of OEHHA (2005), but accounting for the use of DTSC-recommended inhalation rates (DTSC, 2005). Target indoor air concentrations were developed for both cancer risks (Equation 7) and noncancer adverse health effects (Equation 8):

$$C_{ia-risk} = \frac{TR \times BW \times AT_{ca} \times CF_{mg-ug}}{IHR_a \times EF \times ED \times CSF_i}$$
(7)

Where: $C_{ia-risk}$ = target indoor air concentration for cancer risks (µg/m³)

 CF_{ma-ua} = conversion factor from milligrams to micrograms

All other terms previously defined

$$C_{ia-haz} = \frac{THQ \times BW \times AT_{nc} \times CF_{mg-ug}}{IHR_a \times EF \times ED \times 1/RfD_i}$$
(8)

 C_{ia-haz} = target indoor air concentration for noncancer hazard (µg/m3) Where:

All other terms previously defined

Values of exposure parameters used in the target indoor air concentration calculations are listed in Table C-10, as obtained from DTSC (2005). The toxicity criteria for cancer risks and noncancer adverse health effects used in deriving the target indoor air concentrations are presented in Table C-1.

- 2. Use of the Johnson and Ettinger (1991) model to calculate chemical-specific, soil vapor-to-indoor air attenuation factors. The attenuation factors provided by the Johnson and Ettinger (1991) model relate vapor concentrations in indoor air to vapor concentrations in the subsurface by accounting for the one-dimensional convective and diffusive mechanisms of vapor transport from the subsurface into indoor air. Consistent with OEHHA (2005), the advanced Johnson and Ettinger model spreadsheets for subsurface vapor intrusion from soil parameterized by U.S. EPA were used to calculate the attenuation (Attachment C-1). Inputs to the advanced model spreadsheets include chemical properties, and unsaturated zone soil properties for sand from OEHHA, 2005; conservative assumptions regarding other parameters (i.e., structural properties of the building) were based on default values in the model (OEHHA, 2005).
- 3. Calculation of the soil vapor RBSLs. The soil vapor RBSLs were estimated from the calculated target indoor air concentrations and attenuation factors using the following equation:

$$RBSL_{soil\ vapor-ia} = \frac{C_{ia}}{\alpha \times CF_{m3-L}}$$
 (9)

Where: RBSL_{soil vapor-ia} = risk-based screening level for soil vapor, indoor air (µg/L)

 C_{ia} = target indoor air concentration (μ g/m³)

 α = chemical-specific attenuation factor (unitless) CF_{m3-L} = conversion factor from cubic meters to liters

The target commercial/industrial worker indoor air concentrations, attenuation factors, and soil vapor RBSLs estimated for the chemicals detected in soil vapor at the Site are presented in Table C-11.

4.2 RISK-BASED SCREENING LEVELS FOR SOIL VAPOR FOR MOVEMENT OF VOCS TO AMBIENT AIR

RBSLs were developed for the chemical concentrations in soil vapor to be protective of potential commercial/industrial worker or construction worker exposure to the concentrations of these chemicals that may move into ambient air. The process followed to develop these RBSLs is comparable to the one outlined above for developing soil vapor RBSLs for indoor air exposure, but involves the use of different models to predict vapor flux and dispersion of chemicals from subsurface soil vapor to ambient air:

- 1. Calculation of target ambient air concentrations for both cancer risks and noncancer adverse health effects. The equations used to develop the target ambient air concentrations for outdoor commercial/industrial workers and construction workers are equivalent to the equations used to develop the target indoor air concentrations (Equations 7 and 8 above). Values of exposure parameters used in the target ambient air concentration calculations are listed in Tables C-5 and C-6 for the outdoor commercial/industrial workers and construction workers, respectively. The toxicity criteria for cancer risks and noncancer adverse health effects used in deriving the target ambient air concentrations are presented in Table C-1.
- 2. Use of the X/Q Model to calculate subsurface vapor flux from the target ambient air concentrations. The X/Q dispersion model presented in "Soil Screening Guidance: Users Guide and Technical Background Document" (U.S. EPA, 1996a) allows for the prediction of ambient air concentrations of VOCs from a known or estimated subsurface vapor emission rate. The relationship established by the X/Q dispersion model of subsurface vapor flux to ambient air concentration was used to estimate the subsurface vapor emission rate associated with each target ambient air concentration:

$$E_{i} = \frac{C_{oa}}{X/Q} \tag{10}$$

Where: E_i = emission rate (μ g/m²-sec)

 C_{oa} = target ambient air concentration (μ g/m³)

X/Q = Dispersion factor (mg/m³ per mg/m²-sec); calculated from the inverse dispersion factor as presented in supporting equations in Attachment A-1.

3. Use of the VOC Emission Model to calculate soil vapor screening levels from estimated subsurface vapor flux. After the subsurface vapor flux was estimated, the VOC Emission Model presented in "Soil Screening Guidance: Users Guide and Technical Background Document" (U.S. EPA, 1996a) was used to estimate the soil vapor RBSL for ambient air exposures. First the total solute concentration associated with soil vapor was estimated as follows:

$$CT = \frac{E_i \times \sqrt{\pi \times Da \times T}}{2 \times Da \times CF_{m2-cm2}}$$
(11)

Where: CT = total solute concentration ($\mu g/cm^3$)

 E_i = emission rate (μ g/m²-sec)

Da = chemical-specific effective diffusivity in soil pore space (cm²/sec); calculated as presented in Attachment A-1, using site-specific assumptions presented in Attachment A-2 and

chemical-specific parameters presented in Table C-4

T = exposure interval (sec) (equal to exposure duration)

 CF_{m2-cm2} = conversion factor from square meters to square centimeters

The total solute concentration was then used to derive the soil vapor RBSL via the partitioning predicted by Henry's law:

$$RBSL_{soil\ vapor-oa} = \frac{CT}{[(pb \times Kd/H') + Pw/H' + Pa] \times CF_{cm3-L}}$$
(12)

Where: RBSL_{soil vapor-oa}= risk-based screening level for soil vapor, ambient air (µg/L)

 ρ_b = soil bulk density (g/cm³)

Kd = soil-organic partition coefficient (cm³/g)

H' = Henry's Law constant (unitless)
 Pw = water-filled soil porosity (unitless)
 Pa = air-filled soil porosity (unitless)

 CF_{cm3-l} = conversion factor from cubic centimeters to liters

All other terms previously defined

The soil vapor RBSLs developed for commercial/industrial workers and construction workers for inhalation of ambient air are presented in Tables C-12 and C-13, respectively.

4.3 RISK-BASED SCREENING LEVELS FOR TPH AS STODDARD SOLVENT IN SOIL VAPOR

TPH as Stoddard solvent was detected in shallow soil vapor at the Site. To develop RBSLs protective of potential subsurface vapor movement of Stoddard solvent into indoor or ambient air, soil vapor RBSLs were developed for the volatile aliphatic and aromatic hydrocarbon groups in the mixture, and the resulting RBSLs were then weighted and summed to estimate RBSLs for Stoddard solvent. The process was similar to the apportion method used to develop toxicity criteria for Stoddard solvent as described in Section 2.1.1, but applied to the RBSLs instead of toxicity criteria. This step was necessary because the chemical properties used to estimate volatilization are based on the TPH hydrocarbon groups and cannot be simply averaged. Soil vapor RBSLs were developed for c5-c8 aliphatics, c9-c18 aliphatics, and c9-c16 aromatics, using toxicity criteria and chemical properties recommended by DTSC (2009). Soil vapor RBSLs were not developed for the c6-c8 aromatic fraction, consistent with previous methods (developing toxicity criteria for TPH mixtures; Section 2.1). The individual COPCs associated with this fraction (e.g., BTEX) have been analyzed for at the Site and would be evaluated separately with individual RBSLs for these COPCs.

To develop the soil vapor RBSLs for c5-c8 aliphatics, c9-c18 aliphatics, and c9-c16 aromatics, the DTSC chemical properties for these fractions were used in the advanced Johnson and Ettinger model spreadsheets to calculate soil vapor-to-indoor air attenuation factors (Attachment C-1). The chemical properties used in the calculation of RBSLs for ambient air exposures are listed in Table C-4. The DTSC toxicity criteria for these fractions are presented in Tables C-11 through C-13 with the resulting soil vapor RBSLs for indoor commercial/industrial workers, outdoor commercial/industrial workers, and construction workers, respectively. The soil vapor RBSLs for these fractions were then weighted in the calculation of Stoddard solvent RBSLs for all three receptors using previously calculated normalized percentages. The resulting RBSLs for TPH as Stoddard solvent in soil vapor are presented in Table C-14.

Worst case RBSLs were also developed assuming Stoddard solvent is composed of 50% aliphatic and 50% aromatic hydrocarbons (DTSC, 2009) (instead of 80% aliphatics/20% aromatics identified by ATSDR [1999]), and using the most health-protective RBSLs of the volatile aliphatic and aromatic hydrocarbon groups within the mixture. For Stoddard solvent, the RBSLs developed for c9-c18 aliphatics and c9-c16 aromatics were used, with the resulting worst case RBSLs calculated as presented in Table C-14.

5.0 RISK-BASED SCREENING LEVELS FOR GROUNDWATER

RBSLs were developed for the VOCs detected in groundwater to be protective of potential inhalation exposures to concentrations that may move into indoor air. The RBSLs were developed independent of the RBSLs developed for soil vapor described in Section 4.0 above to differentiate vadose zone from groundwater contamination. RBSLs were only developed for potential vapor movement into indoor air to simplify the analysis since these concentrations would also be protective of receptors exposed to ambient air (i.e., outdoor commercial/industrial workers and construction workers).

RBSLs were developed using the Johnson and Ettinger (1991) model for subsurface vapor intrusion from groundwater. Specifically, the "Calculate Risk-based Groundwater Concentration" function in the advanced Johnson and Ettinger model spreadsheets parameterized by U.S. EPA were used to calculate the RBSLs. Inputs to the advanced model spreadsheets include site-specific unsaturated zone soil properties based on the logs of borings 125 and 126, which were advanced to groundwater at the Site (approximately 150 feet bgs). Because similar lithology has been encountered throughout the Site (Section 2.3.2.1 of the FS), the soil lithologic properties assigned to the Johnson and Ettinger model spreadsheets based on the lithologic profile from these two borings was considered representative of site-wide conditions. Conservative assumptions regarding other parameters (i.e., structural properties of future buildings) were based on default values in the model. All input parameters provided to the model are summarized in Attachment D-1. The model spreadsheets used to estimate the RBSLs are provided in Attachment D-2. A summary of the resulting RBSLs is provided in Table 2 of the FS.

5.1 RISK-BASED SCREENING LEVELS FOR TPH AS STODDARD SOLVENT IN GROUNDWATER

With TPH as Stoddard solvent detected in groundwater at the Site, an RBSL protective of potential vapor intrusion from groundwater was developed following the same process described above for TPH as Stoddard solvent in soil vapor (Section 4.3). Groundwater RBSLs were developed for the volatile aliphatic and aromatic hydrocarbon groups in the mixture as discussed in Section 5.0 and presented in Attachment D. The resulting RBSLs were subsequently weighted using previously calculated normalized percentages, and then summed. The resulting RBSL for TPH as Stoddard solvent in groundwater is presented in Table C-15.

For comparison, a worst case RBSL was also developed assuming Stoddard solvent is composed of 50% aliphatic and 50% aromatic hydrocarbons (DTSC, 2009), and using the most health-protective RBSLs developed for the volatile fractions in the mixture. The RBSLs

developed for c9-c18 aliphatics and c9-c16 aromatics were used, with the resulting worst case RBSL calculated as presented in Table C-15.

6.0 UNCERTAINTY ANALYSIS

Uncertainties are inherent in the development of RBSLs, and the use of these values to derive estimates of potential cancer risk and noncancer health hazards. In the development of screening levels, uncertainty arises from a lack of knowledge of toxicity and dose-response of the chemicals, and the extent to which an individual will be exposed to those chemicals (U.S. EPA, 1989). Assumptions are made based on information presented in the scientific literature or professional judgment. While some assumptions have significant scientific basis, others have less scientific basis. The assumptions that introduce the greatest amount of uncertainty in the development of RBSL are discussed below, consistent with U.S. EPA requirements (1989). Uncertainties associated with other aspects of the risk assessment process, such as site characterization, data evaluation, and the use of screening levels in risk characterization, are presented in the report.

6.1 ENVIRONMENTAL FATE AND TRANSPORT

Fate and transport models were used in the development of RBSLs to predict the movement of vapors into indoor and ambient air. While some site-specific conditions were incorporated into the analysis, the models are screening-level models, which typically are conservative and predict concentrations that overestimate risk. For example, biodegradation of petroleum hydrocarbon constituents in the vadose zone is not considered by the model. In addition, conservative assumptions about future building design have been incorporated into the indoor air model (e.g., slab-on-grade foundations). The development of RBSLs is therefore dependent on future building conditions being consistent with those included in the model.

6.2 EXPOSURE ASSUMPTIONS AND PARAMETERS

The exposure parameters used to derive the RBSLs are based on reasonable maximum exposure (RME), which is defined by U.S. EPA as the highest exposure that could reasonably be expected to occur for a given exposure pathway at a site (U.S. EPA, 1989). The exposure parameters associated with a RME scenario are therefore highly conservative. For example, under RME conditions, it is assumed that a commercial/industrial worker is present on-site for 250 days per year for 25 years. The use of such upper-bound estimates in the development of RBSL most likely results in overly protective values.

6.3 TOXICITY CRITERIA

One of the largest sources of uncertainty in any risk assessment is associated with the scientific community's limited understanding of the toxicity of most chemicals in humans following exposure to the low concentrations generally encountered in the environment. The majority of available toxicity data are from animal studies, which are then extrapolated using mathematical models or multiple uncertainty factors to generate toxicity criteria used to predict what might occur in humans. Sources of conservatism in the toxicity criteria used in this evaluation include:

- the use of conservative methods and assumptions to extrapolate from high dose animal studies to predict the possible response in humans at exposure levels far below those administered to animals;
- the assumption that chemicals considered to be carcinogens do not have thresholds (i.e., for all doses greater than zero, some risk is assumed to be present); and
- the fact that epidemiological studies (i.e., human exposure studies) are limited and are not generally considered in a quantitative manner in deriving toxicity values.

The toxicity criteria used in the development of RBSLs were developed using different methods. The noncarcinogenic criteria (i.e., oral and inhalation RfDs) incorporate multiple safety factors to account for limitations in the quality or quantity of available data (e.g., animal data in lieu of human data). These safety factors are applied without regard to available data on the true likelihood of a variation in human response. Therefore, RfDs may be hundreds of times smaller than doses that would actually cause adverse health effects. This purposeful bias in the development of RfDs overestimates the actual potential for noncarcinogenic health risks for these chemicals.

The carcinogenic toxicity criteria (i.e., oral and inhalation CSFs) also are developed using techniques that purposefully bias the criteria toward health conservatism. For example, most CSFs are based on the premise that cancer data from high dose animal studies will predict cancer response in humans at dose levels thousands of times lower. The process also assumes that the carcinogenicity of a chemical in an animal model is representative of the response in humans. Finally, the statistical techniques used by regulatory agencies to extrapolate data from animals to human exposures generally assume that the dose-response curve is linear and that the 95% upper confidence limit of the mean of the slope is representative of the chemical's carcinogenic potency. In aggregate, these assumptions overestimate the actual risk estimates such that they are unlikely to be higher, but could be considerably lower and, in fact, could be non-existent.

A second uncertainty associated with toxicity criteria is the unavailability of RfDs or CSFs for all chemicals at the Site. RBSLs can only be derived for those chemicals for which the relevant toxicity criteria are available. In the absence of data for the inhalation route of exposure, the CSF or RfD for the oral route for these chemicals was used in the evaluation. As a result, the RBSLs for these chemicals may be over- or underestimated. Further, the use of oral toxicity values to assess the dermal pathway introduces additional uncertainty into the results; RBSLs may be overestimated or underestimated using this approach as well. Lastly, in just a few cases, surrogate chemicals were used to represent the toxicity of other chemicals. While the selection and use of surrogates for toxicity criteria is not ideal, the surrogates selected for use in the HHRA were all very closely structurally related to the contaminants they were chosen to represent. A lack of a toxicity criterion would otherwise remain a data gap. The degree of uncertainty contributed by the use of surrogates in this manner is unknown but is not expected to result in significant underestimates of risk.

7.0 REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR), 1999, Toxicological Profile for Total Petroleum Hydrocarbons (TPH), U.S. Department of Health and Human Services. September.
- AMEC Geomatrix, Inc. (AMEC), 2009, Feasibility Study, Pechiney Cast Plate Facility, Vernon, California, September.
- California Regional Water Quality Control Board, San Francisco Bay Region (SFRWQCB), 2008, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final, November 2007 (Revised May 2008).
- Curtis and Thompkins, 2009, Phone Correspondence between Curtis and Thompkins Analytical Laboratory and AMEC Geomatrix, Inc. regarding composition of TPH.
- DTSC, 1999, Assessment of Health Risks from Inorganic Lead in Soil: Lead Spread Model, Version 7, California Environmental Protection Agency, Department of Toxic Substances Control, Sacramento, California.
- DTSC, 2005, Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Military Facilities, Human and Ecological Risk Division, HHRA Note Number 1, October 27.
- DTSC, 2009, Evaluating Human Health Risks from Total Petroleum Hydrocarbons (TPH), Interim Guidance, Human and Ecological Risk Division, California Department of Toxic Substances Control, Sacramento, California, June 16.
- Johnson, P.C., and R. A. Ettinger, 1991, Heuristic Model for Predicting the Intrusion of Contaminant Vapors into Buildings, Environmental Science and Technology, v. 25, n. 8, p. 1445 1452.
- Office of Environmental Health Hazard Assessment (OEHHA), 2005, Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil, California Environmental Protection Agency, January.
- OEHHA, 2008, Chronic Reference Exposure Levels, December, http://www.oehha.ca.gov/air/chronic_rels/AllChrels.html.
- OEHHA, 2009a, Revised California Human Health Screening Level for Lead (Review Draft), California Environmental Protection Agency, May 14.
- OEHHA, 2009b, OEHHA Toxicity Criteria Database, California Environmental Protection Agency, http://www.oehha.ca.gov/risk/chemicaldata/index.asp.
- United States Environmental Protection Agency (U.S. EPA), 1989, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, (Part A), Office of Emergency and Remedial Response, Directive 9285.701A, December.

- U.S. EPA, 1996a, Soil Screening Guidance: Users Guide and Technical Background Document, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/R-95/128, May.
- U.S. EPA, 1996b, Method 8015B, Nonhalogenated Organics Using GC/FID, Revision 2, December, http://www.accustandard.com/asi/pdfs/epa_methods/8015b.pdf
- U.S. EPA, 2004, Region IX Preliminary Remediation Goals (PRGs), October.
- U.S. EPA, 2005, U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee Version date 05/19/05, http://www.epa.gov/superfund/lead/products.htm#alm.
- U.S. EPA, 2009a, Integrated Risk Information System (IRIS) on-line database, http://www.epa.gov/iris.
- U.S. EPA, 2009b, Regional Screening Levels for Chemical Contaminants at Superfund Sites, Regions 3, 6, & 9, Oak Ridge National Laboratory, April, http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm.

TABLE C-1 TOXICITY CRITERIA FOR CHEMICALS OF POTENTIAL CONCERN Former Pechiney Cast Plate, Inc. Facility Vernon, California

						Caro	inogenic To	oxicity Criteria									CI	hronic Nonc	arcinogenic	Toxicity Crit	teria			
				ral	I	Dermal			1 1	Inhalation					Oral	I	Dermal			T	Inhalat		1	T
Chemical	Surrogate	OEHHA CSFo ¹	U.S. EPA CSFo ²	Other CSFo ³	Final CSFo ⁴	CSFd ⁵	OEHHA URF ¹	OEHHA CSFi ⁶	U.S. EPA URF ²	U.S. EPA CSFi ⁶	Other URF ³	Other CSFi ⁶	Final CSFi ⁴	U.S. EPA RfDo ²	Other RfDo ³	Final RfDo ⁷	RfDd ⁵	OEHHA REL ¹	OEHHA RfDi ⁸	U.S. EPA RfC ²	U.S. EPA RfDi ⁸	Other RfC ³	Other RfDi ⁸	Final RfDi ⁴
Polychlorinated Biphenyl	le (PCRe)	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(µg/m³) ⁻¹	(mg/kg-day) ⁻¹	(µg/m³) ⁻¹	(mg/kg-day) ⁻¹	(µg/m³) ⁻¹	(mg/kg-day)	(mg/kg-day) ⁻¹	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	(µg/m³)	(mg/kg-day)	(µg/m³)	(mg/kg-day)	(µg/m³)	(mg/kg-day)	(mg/kg-day)
r Grychionnated Biphenyr	"high-risk" PCBs																							
Aroclor-1232	(slope factors) "high-risk" PCBs	2.00E+00	2.00E+00		2.00E+00	2.00E+00	5.70E-04	2.00E+00	5.70E-04	2.00E+00		NA	2.00E+00	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248	(slope factors)	2.00E+00	2.00E+00		2.00E+00	2.00E+00	5.70E-04	2.00E+00	5.70E-04	2.00E+00		NA	2.00E+00	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254	"high-risk" PCBs (slope factors)	2.00E+00	2.00E+00		2.00E+00	2.00E+00	5.70E-04	2.00E+00	5.70E-04	2.00E+00		NA	2.00E+00	2.00E-05	NA	2.00E-05	2.00E-05	NA	NA	NA	NA	NA	2.00E-05 r	2.00E-05
	"high-risk" PCBs	2.005.00	2.00E+00		2.005.00	2.005.00		2.005.00	5.70E-04	2.00E+00		NA	2.00E+00	NA		NA	NA	NA	NA		NA	NA	NA	NA
Aroclor-1260 Metals	(slope factors)	2.00E+00	2.00E+00		2.00E+00	2.00E+00	5.70E-04	2.00E+00	5.70E-04	2.00E+00	!	NA	2.00E+00	NA NA		NA	NA	INA	NA	NA	NA	NA	NA NA	INA
Arsenic		1.50E+00	1.50E+00		1.50E+00	1.50E+00	3.30E-03	1.20E+01	4.30E-03	1.51E+01		NA	1.20E+01	3.00E-04	NA	3.00E-04	3.00E-04	1.50E-02	4.29E-06	NA	NA	NA	NA	4.29E-06
Barium		NA	NC	NA	NC	NC	NA	NA	NC	NC	NA	NA	NC	2.00E-01	NA	2.00E-01	2.00E-01	NA	NA	NA	NA	5.00E-01 h	1.43E-04	1.43E-04
Beryllium		NA	NA	NA	NA	NA	2.40E-03	8.40E+00	2.40E-03	8.40E+00		NA	8.40E+00	2.00E-03	NA	2.00E-03	2.00E-03	7.00E-03	2.00E-06	2.00E-02	5.71E-06	NA	NA	2.00E-06
Cadmium	Total Cr	NA	NA	NA	NA	NA	4.20E-03	1.50E+01	1.80E-03	6.30E+00		NA	1.50E+01	5.00E-04	NA	5.00E-04	5.00E-04	2.00E-02	5.71E-06	NA	NA	1.00E-02 a	2.86E-06	5.71E-06
	(inhalation slope factor)																							
Chromium (total)	Chromium III (oral reference dose)	NA	NA	NA	NA	NA	NA	NA	1.20E-02	4.20E+01		NA	4.20E+01	1.50E+00	NA	1.50E+00	1.50E+00	NA	NA	NA	NA	NA	1.50E+00 r	1.50E+00
Chromium VI	(0.00	NA	NA	NA	NA	NA	1.50E-01	5.10E+02	8.40E-02	2.94E+02		NA	5.10E+02	3.00E-03	NA	3.00E-03	3.00E-03	2.00E-01	5.71E-05	1.00E-01	2.86E-05	NA	NA	5.71E-05
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	9.00E-03 p	3.15E+01	3.15E+01	NA	3.00E-04 p	3.00E-04	3.00E-04	NA	NA	NA	NA	6.00E-03 p	1.71E-06	1.71E-06
Copper		NA	NC	NA	NC	NC	NA	NA	NC	NC	NA	NA	NC	NA	4.00E-02 h	4.00E-02	4.00E-02	NA	NA	NA	NA	NA	3.70E-02 r	3.70E-02
Lead	Mercuric chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	(oral reference dose)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.00E-04	NA	3.00E-04	3.00E-04	3.00E-02	8.57E-06	NA	NA	NA	NA	8.57E-06
Molybdenum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.00E-03	NA	5.00E-03	5.00E-03	NA	NA	NA	NA	NA	5.00E-03 r	5.00E-03
Nickel		NA	NA	NA	NA	NA	2.60E-04	9.10E-01	NA	NA		NA	9.10E-01	2.00E-02	NA	2.00E-02	2.00E-02	5.00E-02	1.43E-05	NA	NA	9.00E-02 a	2.57E-05	1.43E-05
Selenium Silver		NA NA	NA NC	NA NA	NA NC	NA NC	NA NA	NA NA	NA NC	NA NC	NA NA	NA NA	NA NC	5.00E-03 5.00E-03	NA NA	5.00E-03 5.00E-03	5.00E-03 5.00E-03	2.00E+01 NA	5.71E-03 NA	NA NA	NA NA	NA NA	NA 5.00E-03 r	5.71E-03 5.00E-03
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	6.50E-05	NA NA	6.50E-05	6.50E-05	NA NA	NA NA	NA NA	NA NA	NA NA	8.00E-05 r	8.00E-05
Vanadium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.00E-03 h	7.00E-03	7.00E-03	NA	NA	NA	NA	NA	7.00E-03 r	7.00E-03
Zinc		NA	NC	NA	NC	NC	NA	NA	NC	NC	NA	NA	NC	3.00E-01	NA	3.00E-01	3.00E-01	NA	NA	NA	NA	NA	3.00E-01 r	3.00E-01
Total Petroleum Hydrocal	rbons (Apportion Method																							
TPH as gasoline TPH as diesel		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	5.30E-02 calc 5.70E-01 calc	5.30E-02 5.70E-01	5.30E-02 5.70E-01	NA NA	NA NA	NA NA	NA NA	4.50E+02 calc 1.30E+02 calc	1.30E-01 calc 3.60E-02 calc	
TPH as diesei		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.51E+00 calc	1.51E+00	1.51E+00	NA NA	NA NA	NA NA	NA NA	NA calc	NA calc	
TPH as Stoddard solvent		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.90E-02 calc	6.90E-02	6.90E-02	NA	NA	NA	NA	3.80E+02 calc	1.10E-01 calc	
TEPH		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8.90E-01 calc	8.90E-01	8.90E-01	NA	NA	NA	NA	8.70E+01 calc	2.50E-02 calc	2.50E-02
c6-c10 hydrocarbons		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.30E-02 calc	5.30E-02	5.30E-02	NA	NA	NA	NA	4.50E+02 calc	1.30E-01 calc	1.30E-01
c10-c20 hydrocarbons		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	2.90E-01 calc	2.90E-01	2.90E-01	NA	NA	NA	NA	1.70E+02 calc	4.90E-02 calc	4.90E-02
c10-c28 hydrocarbons c21-c28 hydrocarbons		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	7.20E-01 calc 1.31E+00 calc	7.20E-01 1.31E+00	7.20E-01 1.31E+00	NA NA	NA NA	NA NA	NA NA	9.90E+01 calc	2.80E-02 calc	
Total Petroleum Hydrocai	rbons (Worst Case)	INA	INA	INA	INA	INA	INA	INA	IVA	INA	IVA	INA	INA	INA	1.51E+00 calc	1.512+00	1.512+00	IVA	INA	INA	IVA	TVA Calc	IVA Calc	INA
TPH as gasoline		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.20E-02 calc	2.20E-02	2.20E-02	NA	NA	NA	NA	1.80E+02 calc	5.00E-02 calc	5.00E-02
TPH as diesel		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.20E-02 calc	5.20E-02	5.20E-02	NA	NA	NA	NA	1.80E+02 calc	5.00E-02 calc	5.00E-02
TPH as motor oil		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.02E+00 calc	1.02E+00	1.02E+00	NA	NA	NA	NA	NA calc	NA calc	
TPH as Stoddard solvent TEPH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.20E-02 calc		2.20E-02	NA NA	NA NA	NA NA	NA NA	1.80E+02 calc 1.80E+02 calc	5.00E-02 calc 5.00E-02 calc	
c6-c10 hydrocarbons		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	5.20E-02 calc 2.20E-02 calc		5.20E-02 2.20E-02	NA NA	NA NA	NA NA	NA NA	1.80E+02 calc		
c10-c20 hydrocarbons		NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	5.20E-02 calc		5.20E-02	NA	NA NA	NA NA	NA	1.80E+02 calc		+
c10-c28 hydrocarbons		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.20E-02 calc	5.20E-02	5.20E-02	NA	NA	NA	NA	1.80E+02 calc	5.00E-02 calc	5.00E-02
c21-c28 hydrocarbons		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.02E+00 calc	1.02E+00	1.02E+00	NA	NA	NA	NA	1.80E+02 calc	NA calc	NA NA
Volatile Organic Compou	nds (VOCs)		ı	1	ı	1	1		1		1		ı	1	1	ı	ı	1	ı	_			1	_
Acetone		NA 1.00E-01	NA 5.50E-02	NA 	NA 1.00E-01	NA 1.00E-01	NA 2.90E-05	NA 1.00E-01	NA 7.80E-06	NA 2.73E-02	NA 	NA NA	NA 1.00E-01	9.00E-01 4.00E-03	NA NA	9.00E-01 4.00E-03	9.00E-01 4.00E-03	NA 6.00E+01	NA 1.71E-02	NA 3.00E+01	NA 8.57E-03	3.10E+04 a NA	8.86E+00 NA	8.86E+00 1.71E-02
Benzene 2-Butanone (MEK)		NA	5.50E-02 NA	NA	NA	NA	2.90E-05	NA	7.80E-06 NA	2.73E-02 NA	NA	NA NA	NA	6.00E-01	NA NA	6.00E-03	6.00E-03	NA	1.71E-02 NA	5.00E+01	1.43E+00	NA NA	NA NA	1.71E-02 1.43E+00
n-Butylbenzene		NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	4.00E-02 n	4.00E-02	4.00E-02	NA	NA NA	NA NA	NA	NA	4.00E-02 r	4.00E-02
sec-Butylbenzene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.00E-02 n	4.00E-02	4.00E-02	NA	NA	NA	NA	NA	4.00E-02 r	4.00E-02
Carbon Tetrachloride		1.50E-01	1.30E-01		1.50E-01	1.50E-01	4.20E-05	1.50E-01	1.50E-05	5.25E-02		NA	1.50E-01	7.00E-04	NA	7.00E-04	7.00E-04	4.00E+01	1.14E-02	NA	NA	1.90E+02 a	5.43E-02	1.14E-02
Chloroform		3.10E-02	NA 0.105.00		3.10E-02	3.10E-02	5.30E-06	1.90E-02	2.30E-05	8.05E-02		NA	1.90E-02	1.00E-02	NA	1.00E-02	1.00E-02	3.00E+02	8.57E-02	NA	NA	9.80E+01 a	2.80E-02	8.57E-02
1,2-Dichloroethane (EDC) 1,1-Dichloroethylene	+	4.70E-02 NA	9.10E-02 NA	 NA	4.70E-02 NA	4.70E-02 NA	2.10E-05 NA	7.20E-02 NA	2.60E-05 NA	9.10E-02 NA	 NA	NA NA	7.20E-02 NA	NA 5.00E-02	2.00E-02 p NA	2.00E-02 5.00E-02	2.00E-02 5.00E-02	NA 7.00E+01	NA 2.00E-02	NA 2.00E+02	NA 5.71E-02	2.40E+03 a NA	6.86E-01 NA	6.86E-01 2.00E-02
cis-1,2-Dichloroethylene		NA NA	NC NC	NA NA	NC NC	NC NC	NA NA	NA NA	NC NC	NC NC	NA NA	NA NA	NA NC	5.00E-02 NA	1.00E-02 p	1.00E-02	1.00E-02	7.00E+01	2.00E-02 NA	2.00E+02 NA	5.71E-02 NA	NA NA	1.00E-02 r	1.00E-02
Ethylbenzene		1.10E-02	NC		1.10E-02	1.10E-02	2.50E-06	8.70E-03	NA	NA		NA	8.70E-03	1.00E-01	NA	1.00E-02	1.00E-02	2.00E+03	5.71E-01	1.00E+03	2.86E-01	NA NA	NA	5.71E-01
Isopropylbenzene		NA	NC	NA	NC	NC	NA	NA	NC	NC	NA	NA	NC	1.00E-01	NA	1.00E-01	1.00E-01	NA	NA	4.00E+02	1.14E-01	NA	NA	1.14E-01

TABLE C-1 TOXICITY CRITERIA FOR CHEMICALS OF POTENTIAL CONCERN

Former Pechiney Cast Plate, Inc. Facility Vernon, California

			Carcinogenic Toxicity Criteria										Chronic Noncarcinogenic Toxicity Criteria											
			0	ral		Dermal		-		Inhalation					Oral		Dermal			•	Inhala	tion		
		ОЕННА	U.S. EPA	Other	Final		OEHHA	OEHHA	U.S. EPA	U.S. EPA	Other	Other	Final	U.S. EPA	Other	Final		OEHHA	OEHHA	U.S. EPA	U.S. EPA	Other	Other	Final
Chemical	Surrogate	CSFo ¹	CSFo ²	CSFo ³	CSFo ⁴	CSFd ⁵	URF ¹	CSFi ⁶	URF ²	CSFi ⁶	URF ³	CSFi ⁶	CSFi⁴	RfDo ²	RfDo ³	RfDo ⁷	RfDd ⁵	REL ¹	RfDi ⁸	RfC ²	RfDi ⁸	RfC ³	RfDi ⁸	RfDi⁴
	_	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(µg/m ³) ⁻¹	(mg/kg-day) ⁻¹	(µg/m³)-1	(mg/kg-day) ⁻¹	(µg/m³) ⁻¹	(mg/kg-day)	(mg/kg-day) ⁻¹	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	(µg/m³)	(mg/kg-day)	(µg/m³)	(mg/kg-day)	(µg/m³)	(mg/kg-day)	(mg/kg-day)
Isopropyltoluene	Isopropylbenzene	NA	NC	NA	NC	NC	NA	NA	NC	NC	NA	NA	NC	1.00E-01	NA	1.00E-01	1.00E-01	NA	NA	4.00E+02	1.14E-01	NA	NA	1.14E-01
Naphthalene		NA	NA	NA	NA	NA	3.40E-05	1.20E-01	NA	NA		NA	1.20E-01	2.00E-02	NA	2.00E-02	2.00E-02	9.00E+00	2.57E-03	3.00E+00	8.57E-04	NA	NA	2.57E-03
n-Propylbenzene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.00E-02 n	4.00E-02	4.00E-02	NA	NA	NA	NA	NA	4.00E-02 r	4.00E-02
Tetrachloroethylene (PCE)		5.40E-01	NA		5.40E-01	5.40E-01	5.90E-06	2.10E-02	NA	NA		NA	2.10E-02	1.00E-02	NA	1.00E-02	1.00E-02	3.50E+01	1.00E-02	NA	NA	2.70E+02 a	7.71E-02	1.00E-02
Toluene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8.00E-02	NA	8.00E-02	8.00E-02	3.00E+02	8.57E-02	5.00E+03	1.43E+00	NA	NA	8.57E-02
1,1,1-Trichloroethane		NA	NC	NA	NC	NC	NA	NA	NC	NC	NA	NA	NC	2.00E+00	NA	2.00E+00	2.00E+00	NA	NA	5.00E+03	1.43E+00	NA	NA	1.43E+00
Trichloroethylene (TCE)		5.90E-03	NA		5.90E-03	5.90E-03	2.00E-06	7.00E-03	NA	NA		NA	7.00E-03	NA	3.00E-04 n	3.00E-04	3.00E-04	6.00E+02	1.71E-01	NA	NA	NA	NA	1.71E-01
	1,3,5-Trimethylbenzene																							
1,2,4-Trimethylbenzene	(oral reference dose)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.00E-02 p	5.00E-02	5.00E-02	NA	NA	NA	NA	7.00E+00 p	2.00E-03	2.00E-03
1,3,5-Trimethylbenzene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.00E-02 p	5.00E-02	5.00E-02	NA	NA	NA	NA	6.00E+00 p	1.71E-03	1.71E-03
Total Xylenes		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.00E-01		2.00E-01	2.00E-01	7.00E+02	2.00E-01	1.00E+02	2.86E-02	NA	NA	2.00E-01
m,p-Xylenes	Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.00E-01		2.00E-01	2.00E-01	7.00E+02	2.00E-01	1.00E+02	2.86E-02	NA	NA	2.00E-01
o-Xylene	Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.00E-01		2.00E-01	2.00E-01	7.00E+02	2.00E-01	1.00E+02	2.86E-02	NA	NA	2.00E-01

- Notes:

 1. Office of Environmental Health Hazard Assessment (OEHHA), 2009, Toxicity Criteria Database; or OEHHA, 2008, Chronic Reference Exposure Levels.
- 2. U.S. EPA, 2009a, Integrated Risk Information System (IRIS) database.
- 3. Other U.S. EPA or U.S. Department of Health and Human Services toxicity criteria, as recommended or provided for specific chemicals in U.S. EPA, 2009b, Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites, April, or U.S. EPA, 2004c, Region IX Preliminary Remediation Goals (PRGs). Apportion Method and Worst-Case toxicity criteria for TPH mixtures calculated as described in Section 2.1 and Tables C-2 and C-3.
 - a Toxicity value from ATSDR, as provided in U.S. EPA, 2009b, Regional Screening Levels

 - h Toxicity value from HEAST, as provided in U.S. EPA, 2009b, Regional Screening Levels n Toxicity value from NCEA, as provided in U.S. EPA, 2004, Region 9 Preliminary Remediation Goals
 - p PPRTV used as toxicity value, as provided in U.S. EPA, 2009b, Regional Screening Levels
 - r Toxicity value derived via route-extrapolation, as recommended by DTSC (2009)
- 4. The final criteria is selected, in order, from OEHHA, IRIS, and then other U.S. EPA toxicity criteria sources.
- 5. In the derivation of dermal toxicity factors, gastrointestinal absorption efficiency was assumed to be 100 percent for all chemicals.

- 6. CSFi's calculated from URF's as follows: CSFi = (URF x 70 kg x 1000 µg/mg)/(20 m³/day), unless provided by OEHHA Toxicity Criteria Database.
 7. The final oral reference dose is selected, in order, from IRIS and then other U.S. EPA toxicity criteria sources.
 8. RfDi's calculated from RfC's as follows: RfDi = RfC x (0.001 mg/µg) x (20 m³/day)/(70 kg), unless route-extrapolated from an RfDo as indicated.

Abbreviations:

CSFd = dermal cancer slope factor CSFi = inhalation cancer slope factor

CSFo = oral cancer slope factor

HEAST = Health Effects Assessment Summary Tables

mg/kg-day = milligrams per kilogram per day

µg/m³ = micrograms per cubic meter

NA = not available

NC = noncarcinogenic NCEA = National Center for Environmental Assessment

PPRTV = Provisional Peer-Reviewed Toxicity Value

RfC = reference concentration RfDd = dermal reference dose

RfDi = inhalation reference dose

RfDo = oral reference dose

REL = reference exposure level

URF = unit risk factor

U.S. EPA = United States Environmental Protection Agency

Department of Toxic Substances Control (DTSC), 2009, DTSC Recommended Methodology for Use of U.S. EPA Regional Screening Levels (RSLs) in HHRA risk assessment process at Department of Defense Sites and Facilities, Human and Ecological Risk Division, HHRA Note Number 3, May 6. Sacramento, California, June 16.

Office of Environmental Health Hazard Assessment (OEHHA), 2008, Chronic Reference Exposure Levels, December, http://www.oehha.ca.gov/air/chronic_rels/AllChrels.html OEHHA, 2009, OEHHA Toxicity Criteria Database, California Environmental Protection Agency, http://www.oehha.ca.gov/risk/chemicaldata/index.asp. United States Environmental Protection Agency (U.S. EPA), 2004, Region IX Preliminary Remediation Goals (PRGs), October. U.S. EPA, 2009a, Integrated Risk Information System (IRIS) on-line database, http://www.epa.gov/irisk/.

U.S. EPA, 2009b, Regional Screening Levels for Chemical Contaminants at Superfund Sites, Regions 3, 6, & 9, Oak Ridge National Laboratory, April, http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm.

TABLE C-2 APPORTION METHOD TOXICITY CRITERIA FOR TPH MIXTURES

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	DTSC-recommend	ded Toxicity Cr (RfD _x)	iteria (2009)
Hydrocarbon Range	RfDo (mg/kg-day)	RfDi ¹ (mg/kg-day)	RfC (µg/m3)
c5-c8 Aliphatics	0.04	0.2	700
c9-c18 Aliphatics	0.1	0.086	300
c19-c32 Aliphatics	2		
c9-c16 Aromatics	0.004 2	0.014	50
c17-c32 Aromatics	0.03		

		Aliphatic/								Normalize	ed Percentages	_	for Each Hydi	rocarbon			
		Percenta	ges (A _x)⁴	Percentage	es Estimated	d for Each H	lydrocarbon	Range (P _x)			R	ange (NP _x) ⁵					
	Carbon chains																
	(total number of			C5-C8	C9-C18	C19-C32	C9-C16	C17-C32	Percent Sum	C5-C8	C9-C18	C19-C32	C9-C16	C17-C32	Final RfDo	Final RfDi	Final RfC
Chemical	carbons [HC])3	Aliphatics	Aromatics	Aliphatics	Aliphatics	Aliphatics	Aromatics	Aromatics	(ΣP)	Aliphatics	Aliphatics	Aliphatics	Aromatics	Aromatics	(mg/kg-day)	(mg/kg-day)	(µg/m³)
TPH as gasoline	c6 to c10 (5)	65%	35%	39%	26%	0%	14%	0%	79%	49%	33%	0%	18%	0%	0.053	0.13	450
TPH as diesel	c10 to c24 (15)	65%	35%	0%	39%	26%	16%	19%	100%	0%	39% / 70%	26% / 0%	16% / 30%	19% / 0%	0.57	0.065	230
TPH as motor oil	c23 to c40 (18)	75%	25%	0%	0%	42%	0%	14%	56%	0%	0%	75%	0%	25%	1.51	-	
TPH as Stoddard solvent	c7 to c12 (6)	80%	20%	27%	53%	0%	13%	0%	93%	29%	57%	0%	14%	0%	0.069	0.11	380
TEPH (diesel and motor oil)	c10 to c40 (31)	70%	30%	0%	20%	32%	7%	15%	74%	0%	27% / 75%	43% / 0%	9% / 25%	21% / 0%	0.89	0.068	240
c6-c10 hydrocarbons	c6 to c10 (5)	65%	35%	39%	26%	0%	14%	0%	79%	49%	33%	0%	18%	0%	0.053	0.13	450
c10-c20 hydrocarbons	c10 to c20 (11)	65%	35%	0%	53%	12%	22%	13%	100%	0%	53% / 70%	12% / 0%	22% / 30%	13% / 0%	0.29	0.065	230
c10-c28 hydrocarbons	c10 to c28 (19)	65%	35%	0%	31%	34%	13%	22%	100%	0%	31% / 70%	34% / 0%	13% / 30%	22% / 0%	0.72	0.065	230
c21-c28 hydrocarbons	c21 to c28 (8)	65%	35%	0%	0%	65%	0%	35%	100%	0%	0%	65%	0%	35%	1.31	-	

See Section 2.1.1

 $P_x = \frac{HC_x}{HC} \times A \quad NP_x = \frac{P_x}{\sum P_x} \quad RfD = \sum (NP_x \times RfD_x)$

Notes:

- 1. RfDi calculated from RfC as follows: RfDi = RfC x (0.001 mg/µg) x (20 m3/day)/(70 kg)
- 2. For sites at which naphthalene and the methylnaphthalenes have been evaluated individually, an RfD of 0.03 mg/kg-day can be used for c9-c16 aromatics per DTSC (2009). Naphthalene has been analyzed for at the Site, but not the methylnaphthalenes. RfDo of 0.004 mg/kg-day therefore used
- 3. Carbon chain sizes associated with each non-discrete TPH mixture determined as follows:

TPH as gasoline - c6 to c10; approximate composition based on information provided by ATSDR (1999) (c6 to c10-12) and U.S. EPA (1996) (c6 to c10)

TPH as diesel - c10 to c24; approximate composition based on information provided by ATSDR (1999) (c8-12 to c24-26) and U.S. EPA (1996) (c10 to c28)

TPH as motor oil - c23 to c40; approximate composition based on information provided by SFRWQCB (2008) (c24 to c40) and Curtis and Thompkins (2009)

TPH as Stoddard solvent - c7 to c12; composition provided by ATSDR (1999)

TEPH - c12 to c40; approximate composition based on information provided by Curtis and Thompkins (2009)

- 4. Aliphatic/aromatic percentages associated with each non-discrete TPH mixture determined as follows:
- TPH as gasoline composition provided by ATSDR (1999): "...a general hydrocarbon distribution consisting of 4-8% alkanes, 2-5% alkenes, 25-40% isoalkanes, 3-7% cycloalkanes, 1-4% cycloalkenes, and 20-50% aromatics." Assumed 35% aromatic composition as a mid-point.

TPH as diesel - composition provided by ATSDR (1999): "The composition consists of approximately 64% aliphatic hydrocarbons (straight chain alkanes and cycloalkanes), 1-2% unsaturated hydrocarbons (alkenes), and 35% aromatic hydrocarbons (including alkylbenzenes and 2-, 3-ring aromatics)."

TPH as motor oil - No composition information provided by ATSDR (1999). Used composition information of diesel as surrogate.

TPH as Stoddard solvent - composition provided by ATSDR (1999) - "Stoddard solvent consists of 30-50% linear and branched alkanes, 30-40% cycloalkanes, and 10-20% aromatic hydrocarbons." Assumed 80% aliphatic/20% aromatic to be conservative.

TEPH - Based on the composition of diesel and motor oil.

- c6-c10, c10-c20, c10-c28, and c21-c28 hydrocarbons Used composition information of gasoline or diesel (65% aliphatics, 35% aromatics) as surrogate.
- 5. A second set of normalized percentages was estimated for TPH as diesel, TEPH, c10-c20 hydrocarbons, and c10-c28 hydrocarbons for use in estimating their respective inhalation RfDs and RfCs to account for the low volatility/lack of inhalation toxicity criteria of the c19-c32 aliphatics and c17-c32 aromatics. The normalized percentages were re-calculated excluding these two groups.

Abbreviations:

RfC = reference concentration

RfDi = inhalation reference dose

RfDo = oral reference dose

PH = total petroleum hydrocarbons

-- = Toxicity criteria not available or not developed due to low volatility of the hydrocarbons in the range or mixture. DTSC does not recommend performing a quantitative evaluation of inhalation exposure for c17+ hydrocarbons because of the significant uncertainty involved (DTSC, 2009).

References:

Agency for Toxic Substances Disease Registry (ATSDR), 1999, Toxicological Profile for Total Petroleum Hydrocarbons (TPH), U.S. Department of Health and Human Services, September.

Curtis and Thompkins, 2009, Phone Correspondence between Curtis and Thompkins Analytical Laboratory and AMEC Geomatrix, Inc. regarding composition of TPH.

Department of Toxic Substances Control (DTSC), 2009, Evaluating Human Health Risks from Total Petroleum Hydrocarbons (TPH), Interim Guidance, Human and Ecological Risk Division, California Department of Toxic Substances Control, Sacramento, California, June 16.

Regional Water Quality Control Board, San Francisco Bay Region (SFRWQCB), 2008, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final, Revised, May.

United States Environmental Protection Agency (U.S. EPA), 1996, Method 8015B, Nonhalogenated Organics Using GC/FID, Revision 2, December, http://www.accustandard.com/asi/pdfs/epa_methods/8015b.pdf.

TABLE C-3 WORST CASE TOXICITY CRITERIA FOR TPH MIXTURES

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	DTSC-recommen	ded Toxicity C	riteria (2009)
Hydrocarbon Range	RfDo (mg/kg-day)	RfDi ¹ (mg/kg-day)	RfC (µg/m3)
c5-c8 Aliphatics	0.04	0.2	700
c9-c18 Aliphatics	0.1	0.086	300
c19-c32 Aliphatics	2		
c9-c16 Aromatics	0.004 ²	0.014	50
c17-c32 Aromatics	0.03		

			n-Protective D _o	Most Health Rf	n-Protective fD _i		n-Protective fC	Final Toxicity Criteria (RfD or RfC)		
		RfD _{o,al}	$RfD_{o,ar}$	$RfD_{i,al}$	RfD _{i,ar}	RfC _{al}	RfC _{ar}	RfD _o	RfD _i	RfC
Chemical	Carbon Chains ²	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	(µg/m³)	(µg/m³)	(mg/kg-day)	(mg/kg-day)	(µg/m³)
TPH as gasoline	c6 to c10	0.04	0.004	0.086	0.014	300	50	0.022	0.05	180
TPH as diesel	c10 to c24	0.1	0.004	0.086	0.014	300	50	0.052	0.05	180
TPH as motor oil	c23 to c40	2	0.03					1.02		
TPH as Stoddard solvent	c7 to c12	0.04	0.004	0.086	0.014	300	50	0.022	0.05	180
TEPH (diesel and motor oil)	c10 to c40	0.1	0.004	0.086	0.014	300	50	0.052	0.05	180
c6-c10 hydrocarbons	c6 to c10	0.04	0.004	0.086	0.014	300	50	0.022	0.05	180
c10-c20 hydrocarbons	c10 to c20	0.1	0.004	0.086	0.014	300	50	0.052	0.05	180
c10-c28 hydrocarbons	c10 to c28	0.1	0.004	0.086	0.014	300	50	0.052	0.05	180
c21-c28 hydrocarbons	c21 to c28	2	0.03					1.02		

Notes:

- 1. RfDi calculated from RfC as follows: RfDi = RfC x $(0.001 \text{ mg/}\mu\text{g})$ x (20 m3/day)/(70 kg)
- 2. For sites at which naphthalene and the methylnaphthalenes have been evaluated individually, an RfD of 0.03 mg/kg-day can be used for c9-c16 aromatics per DTSC (2009). Naphthalene has been analyzed for at the Site, but not the methylnaphthalenes. RfDo of 0.004 mg/kg-day therefore used.
- 3. Carbon chain groups associated with each non-discrete TPH mixture determined as described in Section 2.1.1 and Table C-2.

Equations:

$$RfD = (0.5 \times RfD_{al}) + (0.5 \times RfD_{ar})$$

See Section 2.1.2

Abbreviations:

RfC = reference concentration

RfDi = inhalation reference dose

RfDo = oral reference dose

TPH = total petroleum hydrocarbons

-- = Toxicity criteria not available or not developed due to low volatility of the hydrocarbons in the range or mixture. DTSC does not recommend performing a quantitative evaluation of inhalation exposure for c17+ hydrocarbons because of the significant uncertainty involved (DTSC, 2009).

References

Department of Toxic Substances Control (DTSC), 2009, Evaluating Human Health Risks from Total Petroleum Hydrocarbons (TPH), Interim Guidance, Human and Ecological Risk Division, California Department of Toxic Substances Control, Sacramento, California, June 16.

TABLE C-4 PHYSICOCHEMICAL CONSTANTS FOR CHEMICALS OF POTENTIAL CONCERN

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Chemical	Log Octanol- Water Coefficient (log Kow)		Henry's Law Constant (H)		Diffusivity in Air (D _i)		Diffusivity in Water (Dw)		Organic Carbon Partition Coefficient (Koc)		Molecular Weight (MW)		Dermal Soil Absorption (ABSds)	
	(unitless)	Ref	(atm-m³/mole)	Ref	(cm²/sec)	Ref	(cm²/sec)	Ref	(L/kg)	Ref	(g/mole)	Ref		Ref
Polychlorinated Biphenyls	, ,													
Aroclor-1232	3.20	1	8.6E-04	1	NA		7.2E-06	1	6.8E+02	1	221	1	0.15	12
Aroclor-1248	6.06	1	2.9E-03	1	NA		6.6E-06	1	4.4E+05	1	288	1	0.15	12
Aroclor-1254	6.04	1	2.0E-03	5	1.6E-02	5	5.0E-06	5	2.0E+05	5	327	1	0.15	12
Aroclor-1260	6.51	1	1.9E-04	5	3.7E-02	5	5.3E-06	5	2.9E+05	5	370	1	0.15	12
Metals														
Arsenic	NA	-	NA		NA		NA		NA		75	4	0.04	2
Barium	NA		NA		NA		NA		NA		137	4	0.01	3
Beryllium	NA		NA		NA		NA		NA		9.01	4	0.01	3
Cadmium	NA	-	NA		NA		NA		NA		112	4	0.001	8
Chromium (total)	NA		NA		NA		NA		NA		52	4	0.01	3
Chromium VI	NA		NA		NA	-	NA		NA	-	52	4	0.01	3
Cobalt	NA	-	NA		NA		NA		NA		59	4	0.01	3
Copper	NA	-	NA		NA		NA		NA		64	4	0.01	3
Lead	NA		NA		NA		NA		NA		207.2	4	0.01	3
Mercury	NA		1.1E-02	6	3.1E-02	6	6.3E-06	6	5.2E+01	6	200.59	6	0.1	3
Molybdenum	NA	-	NA		NA		NA		NA		95.94	4	0.01	3
Nickel	NA	-	NA		NA		NA		NA		59	4	0.0002	2
Selenium	NA	-	NA		NA		NA		NA		79	4	0.01	3
Silver	NA		NA	-	NA		NA		NA		108	4	0.01	3
Thallium	NA	-	NA		NA		NA		NA		204	4	0.01	3
Vanadium	NA	-	NA	-	NA	-	NA		NA	-	51	4	0.01	3
Zinc	NA	-	NA	-	NA	-	NA		NA	-	65	4	0.01	3
Aliphatic and Aromatic Hy	drocarbons							•	•			-		-
c5-c8 Aliphatics	NA		8.0E-01	13	1.0E-01	13	1.0E-05	13	4.0E+03	13	NA		NA	
c9-c18 Aliphatics	NA		1.9E+00	13	1.0E-01	13	1.0E-05	13	2.5E+05	13	NA		NA	
c9-c16 Aromatics	NA		1.2E-02	13	1.0E-01	13	1.0E-05	13	2.5E+03	13	NA		NA	
Volatile Organic Compour	nds (VOCs)												!	
Acetone	-0.24	10	3.9E-05	6	1.2E-01	6	1.1E-05	6	5.8E-01	6	58.08	6	0.1	3
Benzene	2.13	10	5.5E-03	6	8.8E-02	6	9.8E-06	6	5.9E+01	6	78.11	6	0.1	3
2-Butanone (MEK)	0.40	1	5.6E-05	10	8.1E-02	8	9.8E-06	6	2.3E+00	6	72.11	6	0.1	3
n-Butylbenzene	4.35	1	1.3E-02	6	5.7E-02	6	8.1E-06	6	1.1E+03	6	134.22	6	0.1	3
sec-Butylbenzene	4.24	1	1.4E-02	6	5.7E-02	6	8.1E-06	6	9.7E+02	6	134.22	6	0.1	3
Carbon Tetrachloride	2.73	3	3.0E-02	10	7.8E-02	8	8.8E-06	6	1.7E+02	6	153.82	6	0.1	3
Chloroform	1.92	10	3.7E-03	6	1.0E-01	6	1.0E-05	6	4.0E+01	6	119.38	6	0.1	3
1,2-Dichloroethane (EDC)	1.47	3	9.8E-04	10	1.0E-01	8	9.9E-06	6	1.7E+01	6	98.96	6	0.1	3
1,1-Dichloroethylene	2.13	10	2.6E-02	6	9.0E-02	6	1.0E-05	6	5.9E+01	6	96.94	6	0.1	3
cis-1,2-Dichloroethylene	1.86	3	4.1E-03	10	7.4E-02	8	1.1E-05	8	3.6E+01	8	96.94	8	0.1	3
Ethylbenzene	3.14	10	7.9E-03	6	7.5E-02	6	7.8E-06	6	3.6E+02	6	106.17	6	0.1	3
Isopropylbenzene	3.60	1	1.2E+00	6	6.5E-02	6	7.1E-06	6	4.9E+02	6	120.19	6	0.1	3
Isopropyltoluene	4.10	7	1.1E-02	11	5.6E-02	7	7.3E-06	7	4.1E+03	11	134.22	4	0.1	3
Naphthalene	3.36	10	4.8E-04	6	5.9E-02	6	7.5E-06	6	2.0E+03	6	128.18	6	0.1	3
n-Propylbenzene	3.62	1	1.1E-02	6	6.0E-02	6	7.8E-06	6	5.6E+02	6	120.19	6	0.1	3
Tetrachloroethylene (PCE)	2.67	10	1.8E-02	6	7.2E-02	6	8.2E-06	6	1.6E+02	6	165.83	6	0.1	3

TABLE C-4 PHYSICOCHEMICAL CONSTANTS FOR CHEMICALS OF POTENTIAL CONCERN

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Chemical	Log Octanol- Water Coefficient (log Kow) (unitless)	Ref	Henry's Law Constant (H) (atm-m³/mole)	Ref	Diffusivity in Air (D _i) (cm²/sec)	Ref	Diffusivity in Water (Dw) (cm²/sec)	Ref	Organic Carbon Partition Coefficient (Koc) (L/kg)	Ref	Molecular Weight (MW) (g/mole)	Ref	Dermal Soil Absorption (ABSds)	Ref
Toluene	2.75	10	6.6E-03	6	8.7E-02	6	8.6E-06	6	1.8E+02	6	92.14	6	0.1	3
1,1,1-Trichloroethane	2.48	10	1.7E-02	6	7.8E-02	6	8.8E-06	6	1.1E+02	6	133.4	6	0.1	3
Trichloroethylene (TCE)	2.71	10	1.0E-02	6	7.9E-02	6	9.1E-06	6	1.7E+02	6	131.39	6	0.1	3
1,2,4-Trimethylbenzene	3.72	1	6.1E-03	6	6.1E-02	6	7.9E-06	6	1.4E+03	6	120.2	6	0.1	3
1,3,5-Trimethylbenzene	3.54	1	5.9E-03	6	6.0E-02	6	8.7E-06	6	1.4E+03	6	120.2	6	0.1	3
Total Xylenes	3.17	10	7.3E-03	9	7.0E-02	9	7.9E-06	9	2.0E+02	9	106.17	9	0.1	3
m,p-Xylenes	3.20	1	7.6E-03	6	7.7E-02	6	8.4E-06	6	3.9E+02	6	106.17	6	0.1	3
o-Xylene	3.13	1	5.2E-03	6	8.7E-02	6	1.0E-05	6	3.6E+02	6	106.17	6	0.1	3

Notes:

- 1. Montgomery, J.H., 2000, Groundwater Chemicals Desk Reference (Third Edition), Lewis Publishers, New York.
- 2. OEHHA, 2005, Human Exposure-Based Screening Levels Developed to Aid Estimation of Cleanup Costs for Contaminated Soil.
- 3. DTSC, 1999, Preliminary Endangerment Assessment Guidance Manual, California Environmental Protection Agency, Department of Toxic Substances Control, Sacramento, California.
- 4. Budavari, S., A. Smith, P. Heckelman, J. Kinneary, and M.J. O'Neil, 1996, The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 12th Edition, Chapman & Hall, June.
- 5. U.S. EPA, 2000, User's Guide for the Johnson and Ettinger (1991) Model for Subsurface Vapor Intrusion Into Buildings (Revised), December.
- 6. U.S. EPA, 2003, User's Guide for the Johnson and Ettinger (1991) Model for Subsurface Vapor Intrusion Into Buildings (Revised), December.
- 7. Pennsylvania Department of Environmental Protection, 2007, Chemical and Physical Property Database, http://www.dep.state.pa.us/physicalproperties/CASNUM_Search.htm>.
- 8. U.S. EPA, 2004a, Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final.
- 9. U.S. EPA, 2004b, Region IX Preliminary Remediation Goals (PRGs), October.
- 10. U.S. EPA, 1996, Soil Screening Guidance: Technical Background Document. Office of Solid Waste and Emergency Response, EPA/540/R-95/128, May.
- 11. Toxicology Data Network (TOXNET), 2008, Hazardous Substances Data Bank (HSDB), National Library of Medicine, http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB>.
- 12. DTSC, 2005, Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Military Facilities, Human and Ecological Risk Division, HHRA Note Number 1. October 27.
- 13. DTSC, 2009, Evaluating Human Health Risks from Total Petroleum Hydrocarbons (TPH), Interim Guidance, Human and Ecological Risk Division, California Department of Toxic Substances Control, Sacramento, California, June 16.

Abbreviations:

atm-m³/mole = atmospheres - cubic meter per mole cm²/sec = square centimeters per second g/mole = grams per mole L/kg = liters per kilogram NA = not available Ref = reference --- = not applicable

EXPOSURE PARAMETERS USED IN DEVELOPING RISK-BASED SCREENING LEVELS FOR OUTDOOR COMMERCIAL/INDUSTRIAL WORKERS

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Exposure Parameter	Units	Value
GENERAL EXPOSURE PARAMETER	S	
Exposure Frequency (EF)	days/year	250
Exposure Duration (ED)	years	25
Body Weight (BW)	kg	70
Averaging Time (AT)	days	25,550 (carcinogens)
		9,125 (noncarcinogens)
PATHWAY-SPECIFIC PARAMETERS		
Incidental Soil Ingestion		
Soil Ingestion Rate (IR _s)	mg/day	100
Dermal Contact with Soil		
Exposed Skin Surface Area (SA _s)	cm²/day	5,700
Soil-to-Skin Adherence Factor (SAF)	mg/cm ²	0.2
Absorption Fraction (ABSds)	unitless	Chemical-specific (see Table C-4)
Inhalation of Suspended Soil Particu	lates	
Inhalation Rate (IHR _a)	m³/day	14 (over an 8 hour workday)
Particulate Emission Factor (PEF)	m³/kg	1.32x10 ⁹
Inhalation of Vapors in Outdoor Air		
Inhalation Rate (IHR _a)	m³/day	14 (over an 8 hour workday)

Abbreviations:

cm²/day = centimeters squared per day

kg = kilograms

m³/day = cubic meters per day

m³/kg = cubic meters per kilogram

mg/cm² = milligrams per squared centimeters

mg/day = milligrams per day

EXPOSURE PARAMETERS USED IN DEVELOPING RISK-BASED SCREENING LEVELS FOR CONSTRUCTION WORKERS

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Exposure Parameter	Units	Value							
GENERAL EXPOSURE PARAMETERS									
Exposure Frequency (EF)	days/year	250							
Exposure Duration (ED)	years	1							
Body Weight (BW)	kg	70							
Averaging Time (AT)	days	25,550 (carcinogens)							
		365 (noncarcinogens)							
Pathway-Specific Parameters									
Incidental Soil Ingestion									
Soil Ingestion Rate (IR _s)	mg/day	330							
Dermal Contact with Soil									
Exposed Skin Surface Area (SA _s)	cm²/day	5,700							
Soil-to-Skin Adherence Factor (SAF)	mg/cm ²	0.8							
Absorption Fraction (ABSds)	unitless	Chemical-specific (see Table C-4)							
Inhalation of Vapors in Ambient Air									
Inhalation Rate (IHR _a)	m³/day	20 (over an 8 hour workday)							
Inhalation of Suspended Soil Particulates									
Particulate Emission Factor (PEF)	m³/kg	1.0x10 ⁶							
Inhalation Rate (IHR _a)	m³/day	20 (over an 8 hour workday)							

Abbreviations:

cm²/day = centimeters squared per day

kg = kilograms

m³/day = cubic meters per day m³/kg = cubic meters per kilogram

mg/cm² = milligrams per squared centimeters

mg/day = milligrams per day

RISK-BASED SCREENING LEVELS FOR CHEMICALS OF POTENTIAL CONCERN IN SOIL -OUTDOOR COMMERCIAL/INDUSTRIAL WORKER

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	Oral Cancer	Dermal Cancer Slope			Dermal Reference	Inhalation Reference	Absorption				0	RBSL ¹ utdoor cial/Industrial
Chemical	Slope Factor (CSF _o)	Factor (CSFd)	Factor (CSF _{i)}	Dose (RfDo)	Dose (RfDd)	Dose (RfDi)	Factor ABS	Molecular Weight	Henry's Law Constant	VOC? 2	Cancer	Noncancer
	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	()	(g/mole)	(atm-m³/mole)		(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	, 							•				
Aroclor-1232	2	2	2	NA	NA	NA	0.15	2.2E+02	8.6E-04	No	5.3E-01	
Aroclor-1248	2	2	2	NA	NA	NA	0.15	2.9E+02	2.9E-03	No	5.3E-01	
Aroclor-1254 Aroclor-1260	2 2	2 2	2	2.00E-05	2.00E-05	2.00E-05	0.15 0.15	3.3E+02 3.7E+02	2.0E-03 1.9E-04	No No	5.3E-01 5.3E-01	7.5E+00
Metals			2	NA	NA	NA	0.15	3.7E+02	1.9E-04	INO	5.3E-UI	
	1.5	1.5	12	3.00E-04	3.00E-04	4.29E-06	0.04	7.5E+01	NA	No	1.3E+00	2.1E+02
Arsenic	NC	NC	NC						NA NA			
Barium Cadmium	NA NA	NA NA	15	2.00E-01 5.00E-04	2.00E-01 5.00E-04	1.43E-04 5.71E-06	0.01 0.001	1.4E+02 1.1E+02	NA NA	No No	NC 1.8E+03	1.6E+05 5.0E+02
Chromium (total)	NA NA	NA NA	42	1.50E+00	1.50E+00	1.50E+00	0.001	5.2E+01	NA NA	No	6.4E+02	1.4E+06
Cobalt	NA NA	NA NA	31.5	3.00E-04	3.00E-04	1.71E-06	0.01	5.9E+01	NA NA	No	8.5E+02	2.7E+02
Copper	NC NC	NC	NC NC	4.00E-02	4.00E-02	3.70E-02	0.01	6.4E+01	NA NA	No	NC	3.7E+04
Mercury	NA NA	NA NA	NA	3.00E-04	3.00E-04	8.57E-06	0.1	2.0E+02	1.1E-02	No		1.4E+02
Molybdenum	NA NA	NA NA	NA NA	5.00E-04	5.00E-04 5.00E-03	5.00E-03	0.01	9.6E+01	NA	No		4.6E+03
Nickel	NA NA	NA NA	0.91	2.00E-02	2.00E-02	1.43E-05	0.0002	5.9E+01	NA NA	No	3.0E+04	1.8E+04
Silver	NC NC	NC	NC	5.00E-03	5.00E-03	5.00E-03	0.01	1.1E+02	NA NA	No	NC	4.6E+03
Thallium	NA NA	NA NA	NA NA	6.50E-05	6.50E-05	8.00E-05	0.01	2.0E+02	NA NA	No		6.0E+01
Vanadium	NA NA	NA	NA	7.00E-03	7.00E-03	7.00E-03	0.01	5.1E+01	NA	No		6.4E+03
Zinc	NC	NC	NC	3.00E-01	3.00E-01	3.00E-01	0.01	6.5E+01	NA	No	NC	2.8E+05
Total Petroleum Hydrocarb	ons (Apportion	n Method)			•		•	•				
TPH as gasoline	NA	NA	NA	5.30E-02	5.30E-02	1.30E-01	0.1	NA	NA	Yes		2.5E+04
TPH as diesel	NA	NA	NA	5.70E-01	5.70E-01	6.50E-02	0.1	NA	NA	No		2.7E+05
TPH as motor oil	NA	NA	NA	1.51E+00	1.51E+00	NA	0.1	NA	NA	No		7.2E+05
TPH as Stoddard solvent	NA	NA	NA	6.90E-02	6.90E-02	1.10E-01	0.1	NA	NA	Yes		3.3E+04
TEPH	NA	NA	NA	8.90E-01	8.90E-01	6.80E-02	0.1	NA	NA	No		4.2E+05
c6-c10 hydrocarbons	NA	NA	NA	5.30E-02	5.30E-02	1.30E-01	0.1	NA	NA	Yes		2.5E+04
c10-c20 hydrocarbons	NA	NA	NA	2.90E-01	2.90E-01	6.50E-02	0.1	NA	NA	No		1.4E+05
c10-c28 hydrocarbons	NA	NA	NA	7.20E-01	7.20E-01	6.50E-02	0.1	NA	NA	No		3.4E+05
c21-c28 hydrocarbons	NA	NA	NA	1.31E+00	1.31E+00	NA	0.1	NA	NA	No		6.3E+05
Total Petroleum Hydrocarb	oons (Worst Ca	se)										
TPH as gasoline	NA	NA	NA	2.20E-02	2.20E-02	5.00E-02	0.1	NA	NA	Yes		1.1E+04
TPH as diesel	NA	NA	NA	5.20E-02	5.20E-02	5.00E-02	0.1	NA	NA	No		2.5E+04
TPH as motor oil	NA	NA	NA	1.02E+00	1.02E+00	NA	0.1	NA	NA	No		4.9E+05
TPH as Stoddard solvent	NA	NA	NA	2.20E-02	2.20E-02	5.00E-02	0.1	NA	NA	Yes		1.1E+04
TEPH	NA	NA	NA	5.20E-02	5.20E-02	5.00E-02	0.1	NA	NA	No		2.5E+04
c6-c10 hydrocarbons	NA	NA	NA	2.20E-02	2.20E-02	5.00E-02	0.1	NA	NA	Yes		1.1E+04
c10-c20 hydrocarbons	NA	NA	NA	5.20E-02	5.20E-02	5.00E-02	0.1	NA	NA	No		2.5E+04
c10-c28 hydrocarbons	NA	NA	NA	5.20E-02	5.20E-02	5.00E-02	0.1	NA	NA	No		2.5E+04
c21-c28 hydrocarbons	NA	NA	NA	1.02E+00	1.02E+00	NA	0.1	NA	NA	No		4.9E+05
Volatile Organic Compound			1		1		1					
Acetone	NA	NA	NA	9.00E-01	9.00E-01	8.86E+00	0.1	5.8E+01	3.9E-05	Yes		4.3E+05
Benzene	0.1	0.1	0.1	4.00E-03	4.00E-03	1.71E-02	0.1	7.8E+01	5.5E-03	Yes	1.3E+01	1.9E+03
n-Butylbenzene	NA	NA	NA	4.00E-02	4.00E-02	4.00E-02	0.1	1.3E+02	1.3E-02	Yes		1.9E+04
sec-Butylbenzene	NA	NA	NA	4.00E-02	4.00E-02	4.00E-02	0.1	1.3E+02	1.4E-02	Yes		1.9E+04
Ethylbenzene	0.011	0.011	0.0087	1.00E-01	1.00E-01	5.71E-01	0.1	1.1E+02	7.9E-03	Yes	1.2E+02	4.8E+04
Isopropylbenzene	NC	NC	NC	1.00E-01	1.00E-01	1.14E-01	0.1	1.2E+02	1.2E+00	Yes	NC	4.8E+04
Isopropyltoluene	NC	NC	NC	1.00E-01	1.00E-01	1.14E-01	0.1	1.3E+02	1.1E-02	Yes	NC	4.8E+04
Naphthalene	NA NA	NA NA	0.12	2.00E-02	2.00E-02	2.57E-03	0.1	1.3E+02	4.8E-04	Yes		9.6E+03
n-Propylbenzene	NA 0.54	NA 0.54	NA 0.004	4.00E-02	4.00E-02	4.00E-02	0.1	1.2E+02	1.1E-02	Yes		1.9E+04
Tetrachloroethylene (PCE)	0.54	0.54	0.021	1.00E-02	1.00E-02	1.00E-02	0.1	1.7E+02	1.8E-02	Yes	2.5E+00	4.8E+03
Toluene	NA 0.0050	NA 0.0050	NA 0.007	8.00E-02	8.00E-02	8.57E-02	0.1	9.2E+01	6.6E-03	Yes		3.8E+04
Trichloroethylene (TCE)	0.0059 NA	0.0059 NA	0.007 NA	3.00E-04	3.00E-04	1.71E-01	0.1	1.3E+02	1.0E-02	Yes	2.3E+02	1.4E+02 2.4E+04
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	NA NA	NA NA	NA NA	5.00E-02	5.00E-02	2.00E-03	0.1	1.2E+02	6.1E-03	Yes		
•	NA NA	NA NA	NA NA	5.00E-02	5.00E-02	1.71E-03	0.1	1.2E+02	5.9E-03	Yes		2.4E+04
Total Xylenes m/p-Xylenes	NA NA	NA NA	NA NA	2.00E-01	2.00E-01	2.00E-01 2.00E-01	0.1	1.1E+02	7.3E-03	Yes		9.6E+04 9.6E+04
o-Xylenes	NA NA	NA NA	NA NA	2.00E-01 2.00E-01	2.00E-01 2.00E-01	2.00E-01 2.00E-01	0.1	1.1E+02 1.1E+02	7.6E-03 5.2E-03	Yes Yes		9.6E+04 9.6E+04
O Aylone	177	1471	14/1	2.002 01	2.002 01	2.002 01	0.1		0.ZL 00	100	·	3.0L 104

Notes:

- 1. Risk-based screening levels (RBSL) calculated using the methodology presented by OEHHA, 2005, Human-Exposed-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil, January.
- 2. Chemicals identified as a volatile organic compound (VOC) if the molecular weight is less than 200 g/mole and the Henry's Law Constant is greater than 1x10 ⁻⁵ atm-m³/mole. Volatile TPH identified on the basis of analytical methods for the TPH mixture in soil vapor. The inhalation pathway is not evaluated in the RBSL for VOCs in soil. A particulate emission factor (PEF) of 1.316x10 ⁹ m³/kg is used in the derivation of RBSLs for all non-volatile chemicals.
- of 1.316x10 ⁹ m³/kg is used in the derivation of RBSLs for all non-volatile chemicals.

 3. Inhalation pathway not incorporated into the development of soil RBSLs for VOCs. Volatilization of chemicals from the subsurface to ambient air evaluated using RBSLs developed for soil vapor (Table C-12).

Abbreviations:

atm-m³/mole = atmospheres - cubic meter per mole g/mole = grams per mole mg/kg = milligrams per kilogram mg/kg-day = milligrams per kilogram - day NA = not available NC = noncarcinogenic --- = not applicable

$$\begin{aligned} & \overline{Equations:} \\ & RBSL_{soil-risk} = \frac{TR \times BW \times AT_{ca}}{ED \times EF \times \left[\left(\frac{IR_s \times CSF_a}{CF_{k_g-mg}} \right) + \left(\frac{SAs \times SAF \times ABS \times CSF_a}{CF_{k_g-mg}} \right) + \left(\frac{IHR_a \times CSF_i}{PEF} \right) \right]} \\ & RBSL_{soil-hat} = \frac{THQ \times BW \times AT_{nc}}{ED \times EF \times \left[\left(\frac{1}{RfD_o} \times \frac{IR_s}{CF_{k_g-mg}} \right) + \left(\frac{1}{RfD_o} \times \frac{SAs \times SAF \times ABS}{CF_{k_g-mg}} \right) + \left(\frac{1}{RfD_i} \times \frac{IHR_a}{PEF} \right) \right]} \\ & \text{See Section 3.1} \end{aligned}$$

TABLE C-8 RISK-BASED SCREENING LEVELS FOR CHEMICALS OF POTENTIAL CONCERN IN SOIL -CONSTRUCTION WORKER

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	Oral Cancer Slope Factor	Dermal Cancer Slope Factor	Inhalation Cancer Slope Factor	Oral Reference Dose	Dermal Reference Dose	Inhalation Reference Dose	Absorption Factor	Molecular	Henry's Law			BSL ¹ ion Worker
Chemical	(CSF _o)	(CSFd)	(CSF _{i)}	(RfDo)	(RfDd)	(RfDi)	ABS	Weight	Constant	VOC? 2	Cancer	Noncancer
	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	()	(g/mole)	(atm-m ³ /mole)		(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	(PCBs)											
Aroclor-1232	2	2	2	NA	NA	NA	0.15	2.2E+02	8.6E-04	No	3.5E+00	
Aroclor-1248	2	2	2	NA	NA	NA	0.15	2.9E+02	2.9E-03	No	3.5E+00	
Aroclor-1254	2	2	2	2.00E-05	2.00E-05	2.00E-05	0.15	3.3E+02	2.0E-03	No	3.5E+00	2.0E+00
Aroclor-1260	2	2	2	NA	NA	NA	0.15	3.7E+02	1.9E-04	No	3.5E+00	
Metals	,						•			1		
Arsenic	1.5	1.5	12	3.00E-04	3.00E-04	4.29E-06	0.04	7.5E+01	NA	No	7.1E+00	1.6E+01
Barium	NC	NC	NC	2.00E-01	2.00E-01	1.43E-04	0.01	1.4E+02	NA	No	NC	7.2E+02
Cadmium	NA	NA	15	5.00E-04	5.00E-04	5.71E-06	0.001	1.1E+02	NA	No	2.4E+01	2.5E+01
Chromium (total)	NA	NA	42	1.50E+00	1.50E+00	1.50E+00	0.01	5.2E+01	NA	No	8.5E+00	3.9E+05
Cobalt	NA	NA	31.5	3.00E-04	3.00E-04	1.71E-06	0.01	5.9E+01	NA	No	1.1E+01	7.9E+00
Copper	NC	NC	NC	4.00E-02	4.00E-02	3.70E-02	0.01	6.4E+01	NA	No	NC	1.0E+04
Mercury	NA	NA	NA	3.00E-04	3.00E-04	8.57E-06	0.1	2.0E+02	1.1E-02	No		2.1E+01
Molybdenum	NA	NA	NA	5.00E-03	5.00E-03	5.00E-03	0.01	9.6E+01	NA	No		1.3E+03
Nickel	NA	NA	0.91	2.00E-02	2.00E-02	1.43E-05	0.0002	5.9E+01	NA	No	3.9E+02	7.2E+01
Silver	NC	NC	NC	5.00E-03	5.00E-03	5.00E-03	0.01	1.1E+02	NA	No	NC	1.3E+03
Thallium	NA	NA	NA	6.50E-05	6.50E-05	8.00E-05	0.01	2.0E+02	NA	No		1.7E+01
Vanadium	NA	NA	NA	7.00E-03	7.00E-03	7.00E-03	0.01	5.1E+01	NA	No		1.8E+03
Zinc	NC	NC	NC	3.00E-01	3.00E-01	3.00E-01	0.01	6.5E+01	NA	No	NC	7.8E+04
Total Petroleum Hydrocarb	ons (Apportion				•		•	•				•
TPH as gasoline	NA	NA	NA	5.30E-02	5.30E-02	1.30E-01	0.1	NA	NA	Yes		6.9E+03
TPH as diesel	NA	NA	NA	5.70E-01	5.70E-01	6.50E-02	0.1	NA	NA	No		6.1E+04
TPH as motor oil	NA	NA	NA	1.51E+00	1.51E+00	NA	0.1	NA	NA	No		2.0E+05
TPH as Stoddard solvent	NA	NA	NA	6.90E-02	6.90E-02	1.10E-01	0.1	NA	NA	Yes		9.0E+03
TEPH	NA	NA	NA	8.90E-01	8.90E-01	6.80E-02	0.1	NA	NA	No		8.7E+04
c6-c10 hydrocarbons	NA	NA	NA	5.30E-02	5.30E-02	1.30E-01	0.1	NA	NA	Yes		6.9E+03
c10-c20 hydrocarbons	NA	NA	NA	2.90E-01	2.90E-01	6.50E-02	0.1	NA	NA	No		3.4E+04
c10-c28 hydrocarbons	NA	NA	NA	7.20E-01	7.20E-01	6.50E-02	0.1	NA	NA	No		7.3E+04
c21-c28 hydrocarbons	NA NA	NA	NA	1.31E+00	1.31E+00	NA	0.1	NA	NA NA	No		1.7E+05
Total Petroleum Hydrocarb			14/1			. 47 1	J. 1	14/1		.,0		
TPH as gasoline	NA NA	NA NA	NA	2.20E-02	2.20E-02	5.00E-02	0.1	NA	NA	Yes		2.9E+03
TPH as diesel	NA NA	NA	NA NA	5.20E-02	5.20E-02	5.00E-02	0.1	NA	NA NA	No		6.6E+03
TPH as motor oil	NA NA	NA NA	NA NA	1.02E+00	1.02E+00	NA	0.1	NA	NA NA	No		1.3E+05
TPH as Stoddard solvent	NA NA	NA NA	NA NA	2.20E-02	2.20E-02	5.00E-02	0.1	NA	NA NA	Yes		2.9E+03
TEPH	NA NA	NA NA	NA NA	5.20E-02	5.20E-02	5.00E-02	0.1	NA	NA NA	No		6.6E+03
c6-c10 hydrocarbons	NA NA	NA NA	NA NA	2.20E-02	2.20E-02	5.00E-02	0.1	NA	NA NA	Yes		2.9E+03
c10-c20 hydrocarbons	NA NA	NA NA	NA NA	5.20E-02	5.20E-02	5.00E-02 5.00E-02	0.1	NA NA	NA NA	No		6.6E+03
c10-c28 hydrocarbons	NA NA	NA NA	NA NA	5.20E-02 5.20E-02	5.20E-02 5.20E-02	5.00E-02 5.00E-02	0.1	NA NA	NA NA	No		6.6E+03
c21-c28 hydrocarbons	NA NA	NA NA	NA NA	1.02E+00	1.02E+00	5.00E-02 NA	0.1	NA NA	NA NA	No		1.3E+05

TABLE C-8 RISK-BASED SCREENING LEVELS FOR CHEMICALS OF POTENTIAL CONCERN IN SOIL -CONSTRUCTION WORKER

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	Oral Cancer	Dermal Cancer	Inhalation Cancer Slope	Oral Reference	Dermal Reference	Inhalation Reference	Absorption					BSL ¹ tion Worker
Chemical	Slope Factor (CSF _o)	Slope Factor (CSFd)	Factor (CSF _{i)}	Dose (RfDo)	Dose (RfDd)	Dose (RfDi)	Factor ABS	Molecular Weight	Henry's Law Constant	VOC? 2	Cancer	Noncancer
	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	()	(g/mole)	(atm-m ³ /mole)		(mg/kg)	(mg/kg)
Volatile Organic Compound	Is (VOCs) ³											
Acetone	NA	NA	NA	9.00E-01	9.00E-01	8.86E+00	0.1	5.8E+01	3.9E-05	Yes		1.2E+05
Benzene	0.1	0.1	0.1	4.00E-03	4.00E-03	1.71E-02	0.1	7.8E+01	5.5E-03	Yes	9.1E+01	5.2E+02
n-Butylbenzene	NA	NA	NA	4.00E-02	4.00E-02	4.00E-02	0.1	1.3E+02	1.3E-02	Yes		5.2E+03
sec-Butylbenzene	NA	NA	NA	4.00E-02	4.00E-02	4.00E-02	0.1	1.3E+02	1.4E-02	Yes		5.2E+03
Ethylbenzene	0.011	0.011	0.0087	1.00E-01	1.00E-01	5.71E-01	0.1	1.1E+02	7.9E-03	Yes	8.3E+02	1.3E+04
Isopropylbenzene	NC	NC	NC	1.00E-01	1.00E-01	1.14E-01	0.1	1.2E+02	1.2E+00	Yes	NC	1.3E+04
Isopropyltoluene	NC	NC	NC	1.00E-01	1.00E-01	1.14E-01	0.1	1.3E+02	1.1E-02	Yes	NC	1.3E+04
Naphthalene	NA	NA	0.12	2.00E-02	2.00E-02	2.57E-03	0.1	1.3E+02	4.8E-04	Yes		2.6E+03
n-Propylbenzene	NA	NA	NA	4.00E-02	4.00E-02	4.00E-02	0.1	1.2E+02	1.1E-02	Yes		5.2E+03
Tetrachloroethylene (PCE)	0.54	0.54	0.021	1.00E-02	1.00E-02	1.00E-02	0.1	1.7E+02	1.8E-02	Yes	1.7E+01	1.3E+03
Toluene	NA	NA	NA	8.00E-02	8.00E-02	8.57E-02	0.1	9.2E+01	6.6E-03	Yes		1.0E+04
Trichloroethylene (TCE)	0.0059	0.0059	0.007	3.00E-04	3.00E-04	1.71E-01	0.1	1.3E+02	1.0E-02	Yes	1.5E+03	3.9E+01
1,2,4-Trimethylbenzene	NA	NA	NA	5.00E-02	5.00E-02	2.00E-03	0.1	1.2E+02	6.1E-03	Yes		6.5E+03
1,3,5-Trimethylbenzene	NA	NA	NA	5.00E-02	5.00E-02	1.71E-03	0.1	1.2E+02	5.9E-03	Yes		6.5E+03
Total Xylenes	NA	NA	NA	2.00E-01	2.00E-01	2.00E-01	0.1	1.1E+02	7.3E-03	Yes		2.6E+04
m/p-Xylenes	NA	NA	NA	2.00E-01	2.00E-01	2.00E-01	0.1	1.1E+02	7.6E-03	Yes		2.6E+04
o-Xylene	NA	NA	NA	2.00E-01	2.00E-01	2.00E-01	0.1	1.1E+02	5.2E-03	Yes		2.6E+04

Notes

- 1. Risk-based screening levels (RBSL) calculated using the methodology presented by OEHHA, 2005, Human-Exposed-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil, January.
- 2. Chemicals identified as a volatile organic compound (VOC) if the molecular weight is less than 200 g/mole and the Henry's Law Constant is greater than 1x10 ⁻⁵ atm-m³/mole. Volatile TPH identified on the basis of analytical methods for the TPH mixture in soil vapor. The inhalation pathway is not evaluated in the RBSL for VOCs in soil. A particulate emission factor (PEF) of 2.0x10 ⁷ m³/kg is used in the derivation of RBSLs for all non-volatile chemicals.
- 3. Inhalation pathway not incorporated into the development of soil RBSLs for VOCs. Volatilization of chemicals from the subsurface to ambient air evaluated using RBSLs developed for soil vapor (Table C-13).

Abbreviations:

atm-m³/mole = atmospheres - cubic meter per mole g/mole = grams per mole mg/kg = milligrams per kilogram mg/kg-day = milligrams per kilogram - day NA = not available NC = noncarcinogenic --- = not applicable

$$RBSL_{soil-risk} = \frac{TR \times BW \times AT_{ca}}{ED \times EF \times \left[\left(\frac{IR_{s} \times CSF_{o}}{CF_{kg-mg}} \right) + \left(\frac{SAs \times SAF \times ABS \times CSF_{o}}{CF_{kg-mg}} \right) + \left(\frac{IHR_{a} \times CSF_{i}}{PEF} \right) \right]}$$

$$RBSL_{soil-haz} = \frac{THQ \times BW \times AT_{nc}}{ED \times EF \times \left[\left(\frac{1}{RfD_{o}} \times \frac{IR_{s}}{CF_{kg-mg}} \right) + \left(\frac{1}{RfD_{o}} \times \frac{SAs \times SAF \times ABS}{CF_{kg-mg}} \right) + \left(\frac{1}{RfD_{i}} \times \frac{IHR_{a}}{PEF} \right) \right]}$$
See Section 3.1

TABLE C-9 HEALTH-BASED SCREENING LEVELS FOR LEAD IN SOIL

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Exposure Scenario	Screening Level ¹ (mg/kg)
Outdoor Commercial/Industrial Worker	320
Construction Worker	940

Notes:

 Health-based screening levels derived using either the U.S. EPA Adult Lead Model (U.S. EPA, 2005) (for commercial/industrial workers) or DTSC's Leadspread (1999) (for construction workers), as described in Section 3.2 and presented in Attachments B-1 and B-2.

Abbreviations:

mg/kg = milligrams per kilogram

EXPOSURE PARAMETERS USED IN DEVELOPING RISK-BASED SCREENING LEVELS FOR INDOOR COMMERCIAL/INDUSTRIAL WORKERS

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Exposure Parameter	Units	Value							
GENERAL EXPOSURE PARAMETERS									
Exposure Frequency (EF)	days/year	250							
Exposure Duration (ED)	years	25							
Body Weight (BW)	kg	70							
Averaging Time (AT)	days	25,550 (carcinogens)							
		9,125 (noncarcinogens)							
PATHWAY-SPECIFIC PARAMETERS									
Inhalation of Vapors in Indoor Air									
Inhalation Rate (IHR _a)	m³/day	14 (over an 8 hour workday)							

Abbreviations:

kg = kilograms

m³/day = cubic meters per day

TABLE C-11 RISK-BASED SCREENING LEVELS FOR SOIL VAPOR -INDOOR COMMERCIAL/INDUSTRIAL WORKER

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	Inhalation Tox	icity Criteria	Sc	oil Vapor RB	SL Indoor C	Commercial/li	ndustrial Wo	rker
	Cancer Slope Factor	Reference Dose	Cancer				Noncancer	
Chemical	(CSF _i) (mg/kg-day) ⁻¹	(RfD _i) (mg/kg-day)	Indoor Air (µg/m³)	alpha ² (unitless)	Soil Vapor (µg/L)	Indoor Air (µg/m³)	alpha ² (unitless)	Soil Vapor (µg/L)
Volatile Aliphatic and Aromatic Hydrocarbons								
C5-C8 Aliphatics	NA	2.0E-01		5.3E-04		1.5E+03	5.3E-04	2.7E+03
C9-C18 Aliphatics	NA	8.6E-02	-	5.3E-04		6.3E+02	5.3E-04	1.2E+03
C9-C16 Aromatics	NA	1.4E-02		5.4E-04		1.0E+02	5.4E-04	1.9E+02
Volatile Organic Compoun	ds (VOCs)							
Chloroform	1.9E-02	8.6E-02	1.1E+00	5.5E-04	2.0E+00	6.3E+02	5.5E-04	1.1E+03
1,2-Dichloroethane (EDC)	7.2E-02	6.9E-01	2.8E-01	5.5E-04	5.2E-01	5.0E+03	5.5E-04	9.1E+03
1,1-Dichloroethylene	NA	2.0E-02	-	5.0E-04		1.5E+02	5.0E-04	2.9E+02
cis-1,2-Dichloroethylene	NC	1.0E-02	NC	4.5E-04	NC	7.3E+01	4.5E-04	1.6E+02
Naphthalene	1.2E-01	2.6E-03	1.7E-01	3.9E-04	4.4E-01	1.9E+01	3.9E-04	4.9E+01
Tetrachloroethylene (PCE)	2.1E-02	1.0E-02	9.7E-01	4.4E-04	2.2E+00	7.3E+01	4.4E-04	1.7E+02
Toluene	NA	8.6E-02		4.9E-04		6.3E+02	4.9E-04	1.3E+03
1,1,1-Trichloroethane	NC	1.4E+00	NC	4.6E-04	NC	1.0E+04	4.6E-04	2.3E+04
Trichloroethylene (TCE)	7.0E-03	1.7E-01	2.9E+00	4.7E-04	6.3E+00	1.3E+03	4.7E-04	2.7E+03
1,2,4-Trimethylbenzene	NA	2.0E-03	-	3.9E-04		1.5E+01	3.9E-04	3.7E+01
1,3,5-Trimethylbenzene	NA	1.7E-03		3.9E-04		1.3E+01	3.9E-04	3.2E+01
m,p-Xylenes	NA	2.0E-01		4.6E-04		1.5E+03	4.6E-04	3.2E+03
o-Xylene	NA	2.0E-01		4.9E-04		1.5E+03	4.9E-04	3.0E+03

Notes:

- 1. Risk-based screening levels (RBSL) calculated using the methodology outlined by OEHHA, 2005, Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil, January.
- 2. Chemical-specific alphas calculated using the Johnson and Ettinger Model and default parameters for existing commercial/industrial buildings as outlined by OEHHA (2005). Johnson and Ettinger Model outputs are presented in Attachment C-1.

Abbreviations:

μg/L = micrograms per liter μg/m³ = micrograms per cubic meter NA = not available NC = noncarcinogenic

-- = not applicable

$$\begin{split} & \frac{\text{Equations:}}{C_{ia-risk}} = \frac{TR \times BW \times ATca \times CF_{mg-ug}}{IHR_{ia} \times EF \times ED \times CSF_{i}} \\ & C_{ia-haz} = \frac{THQ \times BW \times ATnc \times CF_{mg-ug}}{IHR_{ia} \times EF \times ED \times 1/RfD_{i}} \\ & RBSL_{soil\ vapor-ia} = \frac{C_{ia}}{\alpha \times CF_{m3-L}} \\ & \text{See Section 4.1} \end{split}$$

TABLE C-12 RISK-BASED SCREENING LEVELS FOR SOIL VAPOR -OUTDOOR COMMERCIAL/INDUSTRIAL WORKER EXPOSURE TO AMBIENT AIR

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	Inhalation Tox	cicity Criteria										Soil Vapor RBS	L ¹ Outdoor	Commercial/I	ndustrial Wor	ker	
						Dimensionless	Organic Carbon	Soil- Organic			C	ancer			Non	cancer	
Chemical	Cancer Slope Factor (CSF _{i)} (mg/kg-day) ⁻¹	Reference Dose (RfDi) (mg/kg-day)	Diffusivity in Air (Di) (cm²/sec)	in Water (Dw)	Henry's Law Constant (H) (atm-m³/mole)	Henry's Law Constant (H')	Partition Coefficient (Koc) (L/kg)	Partition	Effective Diffusivity (Da) (cm²/sec)	Ambient Air Screening Level (µg/m³)	Emission Rate (Ei) (µg/m²-sec)	Total Solute Concentration (CT) (μg/cm³)	Soil Vapor Screening Level (µg/L)	Ambient Air Screening Level (µg/m³)	Emission Rate (Ei) (µg/m²-sec)	Total Solute Concentration (CT) (µg/cm³)	Soil Vapor Screening Level (µg/L)
Volatile Aliphatic and Arol	matic Hydrocar	bons															
C5-C8 Aliphatics	NA	2.0E-01	1.0E-01	1.0E-05	8.0E-01	3.3E+01	4.0E+03	8.0E+00	2.2E-02					1.5E+03	8.6E+01	1.4E+03	2.0E+06
C9-C18 Aliphatics	NA	8.6E-02	1.0E-01	1.0E-05	1.9E+00	7.8E+01	2.5E+05	5.0E+02	1.5E-03					6.3E+02	3.7E+01	2.4E+03	2.2E+05
C9-C16 Aromatics	NA	1.4E-02	1.0E-01	1.0E-05	1.2E-02	4.9E-01	2.5E+03	5.0E+00	9.3E-04					1.0E+02	6.1E+00	5.0E+02	2.9E+04
Volatile Organic Compour	nds (VOCs)																
Chloroform	1.9E-02	8.6E-02	1.0E-01	1.0E-05	3.7E-03	1.5E-01	4.0E+01	8.0E-02	1.1E-02	1.1E+00	6.3E-02	1.5E+00	9.8E+02	6.3E+02	3.7E+01	8.9E+02	5.7E+05
1,2-Dichloroethane (EDC)	7.2E-02	6.9E-01	1.0E-01	9.9E-06	9.8E-04	4.0E-02	1.7E+01	3.5E-02	5.4E-03	2.8E-01	1.7E-02	5.7E-01	1.8E+02	5.0E+03	3.0E+02	1.0E+04	3.2E+06
1,1-Dichloroethylene	NA	2.0E-02	9.0E-02	1.0E-05	2.6E-02	1.1E+00	5.9E+01	1.2E-01	2.6E-02					1.5E+02	8.6E+00	1.3E+02	2.4E+05
cis-1,2-Dichloroethylene	NC	1.0E-02	7.4E-02	1.1E-05	4.1E-03	1.7E-01	3.6E+01	7.1E-02	8.8E-03	NC	NC	NC	NC	7.3E+01	4.3E+00	1.1E+02	8.5E+04
Naphthalene	1.2E-01	2.6E-03	5.9E-02	7.5E-06	4.8E-04	2.0E-02	2.0E+03	4.0E+00	2.8E-05	1.7E-01	1.0E-02	4.7E+00	1.4E+01	1.9E+01	1.1E+00	5.2E+02	1.5E+03
Tetrachloroethylene (PCE)	2.1E-02	1.0E-02	7.2E-02	8.2E-06	1.8E-02	7.5E-01	1.6E+02	3.1E-01	1.1E-02	9.7E-01	5.7E-02	1.4E+00	1.3E+03	7.3E+01	4.3E+00	1.0E+02	9.6E+04
Toluene	NA	8.6E-02	8.7E-02	8.6E-06	6.6E-03	2.7E-01	1.8E+02	3.6E-01	5.1E-03					6.3E+02	3.7E+01	1.3E+03	4.7E+05
1,1,1-Trichloroethane	NC	1.4E+00	7.8E-02	8.8E-06	1.7E-02	7.0E-01	1.1E+02	2.2E-01	1.4E-02	NC	NC	NC	NC	1.0E+04	6.1E+02	1.3E+04	1.4E+07
Trichloroethylene (TCE)	7.0E-03	1.7E-01	7.9E-02	9.1E-06	1.0E-02	4.2E-01	1.7E+02	3.3E-01	7.2E-03	2.9E+00	1.7E-01	5.0E+00	2.9E+03	1.3E+03	7.4E+01	2.2E+03	1.2E+06
1,2,4-Trimethylbenzene	NA	2.0E-03	6.1E-02	7.9E-06	6.1E-03	2.5E-01	1.4E+03	2.7E+00	5.3E-04					1.5E+01	8.6E-01	9.3E+01	5.1E+03
1,3,5-Trimethylbenzene	NA	1.7E-03	6.0E-02	8.7E-06	5.9E-03	2.4E-01	1.4E+03	2.7E+00	5.0E-04					1.3E+01	7.4E-01	8.2E+01	4.3E+03
m,p-Xylenes	NA	2.0E-01	7.7E-02	8.4E-06	7.6E-03	3.1E-01	3.9E+02	7.8E-01	2.7E-03					1.5E+03	8.6E+01	4.1E+03	9.0E+05
o-Xylene	NA	2.0E-01	8.7E-02	1.0E-05	5.2E-03	2.1E-01	3.6E+02	7.3E-01	2.2E-03					1.5E+03	8.6E+01	4.5E+03	7.2E+05

Notes:

Abbreviations:

atm-m³/mole = atmospheres - cubic meter per mole

cm²/sec = square centimeters per second

 $cm^3/g = cubic centimeters per gram$

L/kg = liters per kilogram

μg/cm³ = micrograms per cubic centimeter

μg/L = micrograms per liter

μg/m²-sec = micrograms per square meter per second

 $\mu g/m^3 = micrograms per cubic meter$

NA = not available

NC = noncarcinogenic

-- = not applicable

$$C_{oa-risk} = \frac{TR \times BW \times ATca \times CF_{mg-ug}}{IHR_{ia} \times EF \times ED \times CSF_{i}}$$

$$C_{oa-haz} = \frac{THQ \times BW \times ATnc \times CF_{mg-ug}}{IHR_{ia} \times EF \times ED \times 1/RfD_{i}}$$

$$E_{i} = \frac{C_{oa}}{X/Q}$$

$$CT = \frac{Ei \times \sqrt{\pi \times Da \times T}}{2 \times Da \times CF_{m \, 2-cm \, 2}}$$

$$RBSL_{soil \, vapor-oa} = \frac{CT}{[(pb \times Kd/H') + Pw/H' + Pa] \times CF_{cm3-L}}$$
See Sections 4.1 and 4.2

^{1.} Risk-based screening levels (RBSL) calculated using the X/Q dispersion model and the VOC Emission Model presented in U.S. EPA, 1996, Soil Screening Guidance: Users Guide and Technical Background Document.

TABLE C-13 RISK-BASED SCREENING LEVELS FOR SOIL VAPOR -CONSTRUCTION WORKER EXPOSURE TO AMBIENT AIR

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	Inhalation Tox	icity Criteria					Organic	Soil-				Soil Va	por RBSL ¹	Construction	Worker		
						Dimensionless	Carbon	Organic			С	ancer			No	ncancer	
	Cancer Slope	Reference	Diffusivity	Diffusivity	Henry's Law	Henry's Law	Partition	Partition	Effective	Ambient Air	Emission	Total Solute	Soil Vapor	Ambient Air	Emission	Total Solute	Soil Vapor
	Factor	Dose	in Air	in Water	Constant	Constant	Coefficient	Coefficient	Diffusivity	Screening	Rate	Concentration	Screening	Screening	Rate	Concentration	Screening
Chemical	(CSF _{i)}	(RfDi)	(Di) (cm²/sec)	(Dw) (cm ² /sec)	(H) (atm-m ³ /mole)	(H')	(Koc)	(Kd)	(Da) (cm²/sec)	Level	(Ei)	(CT)	Level	Level	(Ei)	(CT)	Level
		(mg/kg-day)	(CIII /Sec)	(CIII /Sec)	(attii-iii /iiiole)	(unitless)	(L/kg)	(cm³/g)	(CIII /Sec)	(µg/m³)	(µg/m²-sec)	(µg/cm³)	(µg/L)	(µg/m³)	(µg/m²-sec)	(µg/cm³)	(µg/L)
Volatile Aliphatic and Aron	natic Hydrocarb		1	1	ı	1		I	T	1	1	1	1		1	1	
C5-C8 Aliphatics	NA	2.0E-01	1.0E-01	1.0E-05	8.0E-01	3.3E+01	4.0E+03	8.0E+00	2.2E-02					1.0E+03	6.0E+01	2.0E+02	2.8E+05
C9-C18 Aliphatics	NA	8.6E-02	1.0E-01	1.0E-05	1.9E+00	7.8E+01	2.5E+05	5.0E+02	1.5E-03					4.4E+02	2.6E+01	3.4E+02	3.0E+04
C9-C16 Aromatics	NA	1.4E-02	1.0E-01	1.0E-05	1.2E-02	4.9E-01	2.5E+03	5.0E+00	9.3E-04					7.3E+01	4.3E+00	7.0E+01	4.0E+03
Volatile Organic Compoun	ds (VOCs)																
Chloroform	1.9E-02	8.6E-02	1.04E-01	1.00E-05	3.66E-03	1.50E-01	3.98E+01	7.96E-02	1.07E-02	1.88E+01	1.11E+00	5.33E+00	3.4E+03	4.4E+02	2.6E+01	1.2E+02	7.9E+04
1,2-Dichloroethane (EDC)	7.2E-02	6.9E-01	1.04E-01	9.90E-06	9.77E-04	4.00E-02	1.74E+01	3.48E-02	5.38E-03	4.97E+00	2.93E-01	1.99E+00	6.4E+02	3.5E+03	2.1E+02	1.4E+03	4.5E+05
1,1-Dichloroethylene	NA	2.0E-02	9.00E-02	1.04E-05	2.60E-02	1.07E+00	5.89E+01	1.18E-01	2.61E-02					1.0E+02	6.0E+00	1.9E+01	3.3E+04
cis-1,2-Dichloroethylene	NC	1.0E-02	7.36E-02	1.13E-05	4.07E-03	1.67E-01	3.55E+01	7.10E-02	8.77E-03	NC	NC	NC	NC	5.1E+01	3.0E+00	1.6E+01	1.2E+04
Naphthalene	1.2E-01	2.6E-03	5.90E-02	7.50E-06	4.82E-04	1.98E-02	2.00E+03	4.00E+00	2.80E-05	2.98E+00	1.76E-01	1.65E+01	4.9E+01	1.3E+01	7.7E-01	7.3E+01	2.1E+02
Tetrachloroethylene (PCE)	2.1E-02	1.0E-02	7.20E-02	8.20E-06	1.84E-02	7.53E-01	1.55E+02	3.10E-01	1.08E-02	1.70E+01	1.00E+00	4.81E+00	4.5E+03	5.1E+01	3.0E+00	1.4E+01	1.3E+04
Toluene	NA	8.6E-02	8.70E-02	8.60E-06	6.62E-03	2.72E-01	1.82E+02	3.64E-01	5.10E-03					4.4E+02	2.6E+01	1.8E+02	6.6E+04
1,1,1-Trichloroethane	NC	1.4E+00	7.80E-02	8.80E-06	1.72E-02	7.03E-01	1.10E+02	2.20E-01	1.37E-02	NC	NC	NC	NC	7.3E+03	4.3E+02	1.8E+03	2.0E+06
Trichloroethylene (TCE)	7.0E-03	1.7E-01	7.90E-02	9.10E-06	1.03E-02	4.21E-01	1.66E+02	3.32E-01	7.24E-03	5.11E+01	3.01E+00	1.76E+01	1.0E+04	8.8E+02	5.2E+01	3.0E+02	1.7E+05
1,2,4-Trimethylbenzene	NA	2.0E-03	6.06E-02	7.92E-06	6.14E-03	2.52E-01	1.35E+03	2.70E+00	5.32E-04					1.0E+01	6.0E-01	1.3E+01	7.1E+02
1,3,5-Trimethylbenzene	NA	1.7E-03	6.02E-02	8.67E-06	5.87E-03	2.41E-01	1.35E+03	2.70E+00	5.05E-04					8.8E+00	5.2E-01	1.1E+01	6.0E+02
m,p-Xylenes	NA	2.0E-01	7.69E-02	8.44E-06	7.64E-03	3.13E-01	3.89E+02	7.78E-01	2.68E-03					1.0E+03	6.0E+01	5.8E+02	1.3E+05
o-Xylene	NA	2.0E-01	8.70E-02	1.00E-05	5.18E-03	2.12E-01	3.63E+02	7.26E-01	2.24E-03					1.0E+03	6.0E+01	6.3E+02	1.0E+05

Notes:

1. Risk-based screening levels (RBSL) calculated using the X/Q dispersion model and the VOC Emission Model presented in U.S. EPA, 1996, Soil Screening Guidance: Users Guide and Technical Background Document.

Abbreviations:

-- = not applicable

atm-m³/mole = atmospheres - cubic meter per mole cm²/sec = square centimeters per second cm³/g = cubic centimeters per gram
L/kg = liters per kilogram
μg/cm³ = micrograms per cubic centimeter
μg/L = micrograms per liter
μg/m²-sec = micrograms per square meter per second
μg/m³ = micrograms per cubic meter
NA = not available
NC = noncarcinogenic

$$C_{oa-risk} = \frac{TR \times BW \times ATca \times CF_{mg-ug}}{IHR_{ia} \times EF \times ED \times CSF_{i}}$$

$$C_{oa-haz} = \frac{THQ \times BW \times ATnc \times CF_{mg-ug}}{IHR_{ia} \times EF \times ED \times 1/RfD_{i}}$$

$$E_{i} = \frac{C_{oa}}{X/Q}$$

$$CT = \frac{Ei \times \sqrt{\pi \times Da \times T}}{2 \times Da \times CF_{m 2-cm 2}}$$

$$RBSL_{soilvapor-oa} = \frac{CT}{[(pb \times Kd/H) + Pw/H' + Pa] \times CF_{cm3-L}}$$
See Sections 4.1 and 4.2

TABLE C-14 RISK-BASED SCREENING LEVELS FOR TPH MIXTURES IN SOIL VAPOR

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	Soil Va	por RBSLs No	ncancer			
	Outdoor					
	Indoor	Commercial/				
	Commercial/	Industrial	Construction			
	Industrial Worker Worker Worker					
Hydrocarbon Range	(µg/L) ¹	(µg/L) ²	(μg/L) ³			
c5-c8 Aliphatics	2.7E+03	2.0E+06	2.8E+05			
c9-c18 Aliphatics	1.2E+03	2.2E+05	3.0E+04			
c9-c16 Aromatics	1.9E+02	2.9E+04	4.0E+03			

				Worst Case ⁶					
	Normalized F	Percentages Estir	mated for Each						
	Н	Hydrocarbon Range ⁵			oor RBSLs No	ncancer	Soil Va	oor RBSLs No	ncancer
				Indoor	Outdoor		Indoor	Outdoor	
				Commercial/	Commercial/		Commercial/	Commercial/	
				Industrial	Industrial	Construction	Industrial	Industrial	Construction
		C9-C18		Worker	Worker	Worker	Worker	Worker	Worker
Chemical	C5-C8 Aliphatics	Aliphatics	C9-C16 Aromatics	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
TPH as Stoddard solvent	29%	57%	14%	1.5E+03	6.9E+05	1.0E+05	6.8E+02	1.2E+05	1.7E+04

Notes:

- 1. Soil vapor RBSLs calculated as discussed in Section 4.1 and presented in Table C-11.
- 2. Soil vapor RBSLs calculated as discussed in Section 4.2 and presented in Table C-12.
- 3. Soil vapor RBSLs calculated as discussed in Section 4.2 and presented in Table C-13.
- 4. Apportion method RBSLs calculated by summing the soil vapor RBSLs for c5-c8 aliphatics, c9-c18 aliphatics, and c9-c16 aromatics, weighted by their respective normalized percentages.
- 5. Normalized percentages estimated as discussed in Section 2.1.1 and presented in Table C-2.
- 6. Worst case RBSLs calculated assuming Stoddard solvent is composed of 50% aliphatic and 50% aromatic hydrocarbons, and using the most health-protective RBSLs of the volatile aliphatic and aromatic hydrocarbon groups within the mixture (c9-c18 aliphatics and c9-c16 aromatics).

Abbreviations:

μg/L = micrograms per liter

RBSL = risk-based screening level

TPH = total petroleum hydrocarbons

TABLE C-15 RISK-BASED SCREENING LEVELS FOR TPH MIXTURES IN GROUNDWATER

Former Pechiney Cast Plate, Inc. Facility Vernon, California

	Groundwater RBSLs Noncancer
Hydrocarbon Range	Indoor Commercial/ Industrial Worker (µg/L) ¹
c5-c8 Aliphatics	9.2E+02
c9-c18 Aliphatics	1.7E+02
c9-c16 Aromatics	4.7E+03

		Apportion Me	thod ²	-	Worst Case ⁴			
	Normalized Percentage	Normalized Percentages Estimated for Each Hydrocarbon						
		Range ³ Noncance						
				Commercial/	Commercial/			
				Industrial	Industrial			
		C9-C18	C9-C16	Worker	Worker			
Chemical	C5-C8 Aliphatics	Aliphatics	Aromatics	(µg/L)	(µg/L)			
TPH as Stoddard solvent	29%	57%	14%	1.0E+03	6.8E+02			

Notes:

- 1. Groundwater RBSLs calculated as discussed in Section 5.0 and presented in Attachment D-2.
- 2. Apportion method RBSL calculated by summing the soil vapor RBSLs for c5-c8 aliphatics, c9-c18 aliphatics, and c9-c16 aromatics, weighted by their respective normalized percentages.
- 3. Normalized percentages estimated as discussed in Section 2.1.1 and presented in Table C-2.
- 4. Worst case RBSL calculated assuming Stoddard solvent is composed of 50% aliphatic and 50% aromatic hydrocarbons, and using the most health-protective RBSLs of the volatile aliphatic and aromatic hydrocarbon groups within the mixture (c9-c18 aliphatics and c9-c16 aromatics).

Abbreviations:

μg/L = micrograms per liter RBSL = risk-based screening level TPH = total petroleum hydrocarbons

ATTACHMENT A-1 ADDITIONAL EQUATIONS USED IN SOIL VAPOR SCREENING LEVEL CALCULATIONS

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Estimation of Chemical Constants: (U.S. EPA, 1996)

$$H' = H/RT \qquad (1)$$

$$H' = Dimensionless Henry's Law Constant H = Henry's Law Constant (atm-m³/mole) R = Universal gas constant (atm-m³/mole-K) T = Temperature (K)

$$Kd = Koc \times foc \qquad (2)$$

$$Kd = Soil-organic partition coefficient (cm³/g) Koc = Organic carbon partition coefficient (L/kg) foc = Fraction organic-carbon (unitless)

$$Supporting Equations: (U.S. EPA, 1996)$$

$$X/Q = \frac{CF_{kg-mg}}{Q/C \times CF_{g-mg}} \qquad (3)$$

$$X/Q = Air dispersion factor (mg/m³ per mg/m²-sec) Q/C = Inverse of dispersion factor (g/m²-sec per kg/m³) CF_{g-mg} = Conversion Factor from g to mg (mg/g) CF_{kg-mg} = Conversion Factor from kg to mg (mg/kg)$$

$$Q/C = A \times exp[(ln Ac - B)² ÷ C] \qquad (4)$$

$$Q/C = Inverse of dispersion factor (g/m²-sec per kg/m³) Ac = Area of site (acres) A = A Constant (Location - Los Angeles, CA) B = B Constant (Location - Los Angeles, CA) C = C Constant (Location - Los Angeles, CA) C = C Constant (Location - Los Angeles, CA)$$$$$$

ATTACHMENT A-1 ADDITIONAL EQUATIONS USED IN SOIL VAPOR SCREENING LEVEL CALCULATIONS

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Supporting Equations (continued): (U.S. EPA, 1996)

Da =
$$[(Pa^{10/3} \times Di \times H' + Pw^{10/3} \times Dw) / Pt^{2}]$$

pb x Kd + Pw + Pa x H' (5)

Da = Effective Diffusivity (cm²/sec)

Pa = Air-filled soil porosity (unitless)

Di = Diffusivity in air (cm²/sec)

H' = Dimensionless Henry's Law Constant

Pw = Water-filled soil porosity (unitless)

Dw = Diffusivity in water (cm²/sec)

Pt = Total porosity (unitless)

pb = Soil bulk density (g/cm³)

Kd = Soil-Organic partition coefficient (cm³/g)

Abbreviations:

atm = atmospheres

cm² = square centimeters

cm³ = cubic centimeters

g = grams

K = kelvin

kg = kilograms

L = liters

 m^2 = square meters

m³ = cubic meters

mg = milligrams

sec = seconds

ATTACHMENT A-2 RISK ASSESSMENT ASSUMPTIONS

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Parameter	Symbol	Value	Units	Source
Exposure Assumptions				
Target Risk	TR	1.0E-06	unitless	OEHHA, 2005a
Target Hazard Quotient	THQ	1.0E+00	unitless	OEHHA, 2005a
Duration - Commercial/Industrial	T_{ind}	7.9E+08	sec	Calculated
Duration - Construction	T _{cw}	3.2E+07	sec	Calculated
Site Assumptions				
Area of Source	Area	4576	m ²	Site-specific
Area of Source	Area_acres	1.13	acre	Site-specific
A Constant	Α	11.91	unitless	Los Angeles
B Constant	В	18.44	unitless	Los Angeles
C Constant	С	209.78	unitless	Los Angeles
Air Dispersion Factor	X/Q	16.96	mg/m³ per mg/m²-sec	Calculated
Inverse of Dispersion Factor	Q/C	58.95	g/m ² -sec per kg/m ³	Calculated
Particulate Emission Factor				
Construction Worker	PEFcw	1.00E+06	m³/kg	DTSC, 2005
Commercial/Industrial Worker	PEFow	1.32E+09	m³/kg	DTSC, 2005
Temperature	Т	295	Kelvin	Default
Soil Constants				
Fraction Organic Carbon	foc	0.002	unitless	Default
Air Filled Soil Porosity	Pa	0.321	unitless	Default for sandy soil type
Water Filled Soil Porosity	Pw	0.054	unitless	Default for sandy soil type
Total Porosity	Pt	0.375	unitless	Default for sandy soil type
Soil Bulk Density	rb	1.66	g/cm ³	Default for sandy soil type
Conversion Factors				
Conversion Factor from cm ³ to L	CF _{cm3-L}	1E-03	L/cm ³	Constant
Conversion Factor from m ³ to L	CF _{m3-L}	1E+03	L/m ³	Constant
Conversion Factor from g to kg	CF _{g-kg}	1E-03	kg/g	Constant
Conversion Factor from g to mg	CF _{g-mg}	1E+03	mg/g	Constant
Conversion Factor from kg to mg	CF _{kg-mg}	1E+06	mg/kg	Constant
Conversion Factor from m ² to cm ²	CF _{m2-cm2}	1E+04	cm ² /m ²	Constant
Conversion Factor from mg to g	CF _{mg-g}	1E-06	g/mg	Constant

Abbreviations:

cm² = square centimeters

cm³ = cubic centimeters

g = grams

kg = kilograms L = liters

m² = square meters

 m^3 = cubic meters

mg = milligrams

sec = seconds

ATTACHMENT B-1

Revised California Human Health Screening Level for Lead

Developed Using U.S. EPA's Adult Lead Model (ALM) (U.S. EPA, 2005) Outdoor Commercial/Industrial Worker

U.S. EPA Version date 05/19/05

Exposure				Regior	n OR Ethni	c GSDi and Pl	bBo Data from	NHANES III A	nalysis	
Variable	Description of Exposure Variable	Units	All/All	All/White	All/Black	All/Mexican	Northeast/All	Midwest/All	South/All	West/All
PbB _{fetal, 0.90}	90 th percentile PbB in fetus	ug/dL	1	10	10	10	10	10	10	10
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB ^a		1.8	2.1	2.2	2.3	2.0	2.2	2.1	2.1
PbB ₀	Baseline PbB ^a	ug/dL	0.0	1.5	1.8	1.7	2.0	1.5	1.4	1.4
IR _s	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust) ^a	days/yr	250	219	219	219	219	219	219	219
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365	365	365	365	365
PRG		ppm	318	1,288	938	794	1,092	1,079	1,366	1,287

¹ Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When $IR_S = IR_{S+D}$ and $W_S = 1.0$, the equations yield the same PRG.

Notes:

a = Default U.S. EPA ALM values replaced by values consistent with OEHHA recommendations (2009).

g = grams

μg/dL = micrograms per deciliter

y = year

ATTACHMENT B-2 LEAD RISK ASSESSMENT SPREADSHEET

CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL CONSTRUCTION WORKER

USER'S GUIDE to version 7

INPUT	
MEDIUM	LEVEL
Lead in Air (ug/m³)	0.028
Lead in Soil/Dust (ug/g)	940
Lead in Water (ug/l)	15
% Home-grown Produce	7%
Respirable Dust (ug/m³)	1.5

	OUTPU	JT					
	Percen	tile Esti	mate of E	Blood Pb	(ug/dl)	PRG-99	PRG-95
	50th	90th	95th	98th	99th	(ug/g)	(ug/g)
BLOOD Pb, ADULT	6.5	11.9	14.0	17.1	19.4	391	614
BLOOD Pb, CHILD	13.4	24.4	28.9	35.2	40.0	146	247
BLOOD Pb, PICA CHILD	20.0	36.5	43.2	52.5	59.8	94	159
BLOOD Pb, OCCUPATIONAL	3.4	6.1	7.2	8.8	10.0	937	1474

EXPOSURE PARAMETERS									
	units	adults	children						
Days per week	days/wk		7						
Days per week, occupational		5							
Geometric Standard Deviation		1	.6						
Blood lead level of concern (ug/	/dl)	•	10						
Skin area, residential	cm ²	5700	2900						
Skin area occupational ^a	cm ²	5700							
Soil adherence ^a	ug/cm ²	800	200						
Dermal uptake constant	(ug/dl)/(ug/day)	0.0	0001						
Soil ingestion ^b	mg/day	165	100						
Soil ingestion, pica	mg/day		200						
Ingestion constant	(ug/dl)/(ug/day)	0.04	0.16						
Bioavailability	unitless	0	.44						
Breathing rate	m³/day	20	6.8						
Inhalation constant	(ug/dl)/(ug/day)	0.08	0.192						
Water ingestion	l/day	1.4	0.4						
Food ingestion	kg/day	1.9	1.1						
Lead in market basket	ug/kg	3.1							
Lead in home-grown produce	ug/kg	42	23.0						

PATHWAYS												
ADULTS	R	esident	ial	O	ccupation	al						
	Pathw	Pathway contribution Pathway contribution										
Pathway	PEF	ug/dl	percent	PEF	ug/dl	percent						
Soil Contact	4.4E-4	0.41	6%	3.1E-4	0.29	9%						
Soil Ingestion	2.9E-3	2.73	42%	2.1E-3	1.95	58%						
Inhalation, bkgrnd		0.05	1%		0.03	1%						
Inhalation	2.5E-6	0.00	0%	1.8E-6	0.00	0%						
Water Ingestion		0.84	13%		0.84	25%						
Food Ingestion, bkgrn	d	0.22	3%		0.23	7%						
Food Ingestion	2.4E-3	2.25	35%			0%						

CHILDREN		typical		with pica				
	Pathw	ay cont	ribution	Pathw	ay contri	bution		
Pathway	PEF	ug/dl	percent	PEF	ug/dl	percent		
Soil Contact	5.6E-5	0.05	0%		0.05	0%		
Soil Ingestion	7.0E-3	6.62	49%	1.4E-2	13.24	66%		
Inhalation	2.0E-6	0.00	0%		0.00	0%		
Inhalation, bkgrnd		0.04	0%		0.04	0%		
Water Ingestion		0.96	7%		0.96	5%		
Food Ingestion, bkgrn	d	0.50	4%		0.50	3%		
Food Ingestion	5.5E-3	5.21	39%		5.21	26%		

Notes:

- a Default Lead Spread value replaced by value used in the derivation of other risk-based screening levels (see Table C-6).
- b Default Lead Spread value replaced by 50 percent of the soil ingestion rate used in the derivation of other risk-based screening levels.

on 3.0; 02/03	CALCULATE RIS	K-BASED SOIL CO	NCENTRATION (e	nter "X" in "YES" box)			Geomatrix Versio		1						
		YES		1			modified by MJC, includes Cal-EPA								
			OR						ENTER						
	CALCULATE INC	REMENTAL RISKS	FROM ACTUAL S	OIL CONCENTRATION	I (enter "X" in "YE	S" box and initial so	il conc. below)		U.S. EPA or Cal-EPA						
		YES	X]											
	ENTER	ENTER							Cal-EPA						
		Initial													
	Chemical CAS No.	soil conc.,													
	(numbers only,	C_R													
	no dashes)	(mg/kg)	=		Chemical		=								
	67663]		Chloroform]								
	107062				-Dichloroethar										
	75354				Dichloroethyle										
	156592 91203				2-Dichloroethy	rlene									
	127184	-			Naphthalene rachloroethyle	no	1								
	108883			16	Toluene	ile .	1								
	71556	-	1	1.1.	1-Trichloroetha	ane	1								
	79016				ichloroethylen		1								
	95636		1	1,2,4	-Trimethylbenz	zene	1								
	108678				-Trimethylbenz										
	106423				p-Xylene										
	95476 9999992				o-Xylene		ļ								
	9999994				5-C8 Aliphatic 9-C18 Aliphatic										
	9999996				-C16 Aromatic		1								
		l .	1		- O TO THOMAIN		1								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals m	ENTER ust add up to value o	ENTER	ENTER Soil		ENTER					
ê		below grade		grade to bottom	Totals III	Thickness	Thickness	stratum A		User-defined					
	Average	to bottom	Depth below	of contamination,	Thickness	of soil	of soil	SCS		stratum A					
	soil temperature,	of enclosed space floor,	grade to top of contamination,	(enter value of 0 if value is unknown)	of soil stratum A,	stratum B, (Enter value or 0)	stratum C, (Enter value or 0)	soil type (used to estimate	e OR	soil vapor permeability,					
	T _S	Space 11001, L _F	L _t	L _b	h _A	(Enter value or 0)	h _C	soil vapor	. OK	k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	_	(cm ²)					
	22	9	49	0	9	10	30	S							
				· ·	<u> </u>		- 00		- ! !						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
	Stratum A	Stratum A		0			A						ENIER	ENIER	
MORE			Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
MORE ê	SCS soil type	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	Stratum B soil water-filled	Stratum B soil organic	Stratum C SCS	Stratum C soil dry	Stratum C soil total	Stratum C soil water-filled	Stratum C soil organic
	soil type			soil water-filled porosity, q_w^A		SCS	soil dry bulk density, r _b ^B		Stratum B soil water-filled porosity, q _w ^B	Stratum B	Stratum C	Stratum C soil dry bulk density, r_b^C	Stratum C	Stratum C	Stratum C
		soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS	soil dry bulk density,	soil total porosity,	Stratum B soil water-filled porosity,	Stratum B soil organic carbon fraction,	Stratum C SCS	Stratum C soil dry bulk density,	Stratum C soil total porosity,	Stratum C soil water-filled porosity,	Stratum C soil organic carbon fraction,
		soil dry bulk density, r _b ^A	soil total porosity, n ^A	soil water-filled porosity, q_w^A	soil organic carbon fraction, foc A	SCS	soil dry bulk density, r _b ^B	soil total porosity, n ^B	Stratum B soil water-filled porosity, q _w ^B	Stratum B soil organic carbon fraction, $f_{oc}^{\ \ B}$	Stratum C SCS	Stratum C soil dry bulk density, r_b^C	Stratum C soil total porosity, n ^C	Stratum C soil water-filled porosity, q_w^C	Stratum C soil organic carbon fraction, ${f_{oc}}^{C}$
	soil type	soil dry bulk density, r _b ^A (g/cm ³)	soil total porosity, n ^A (unitless)	soil water-filled porosity, q _w (cm ³ /cm ³)	soil organic carbon fraction, foc (unitless)	SCS soil type	soil dry bulk density, r _b ^B (g/cm ³)	soil total porosity, n ^s (unitless)	Stratum B soil water-filled porosity, q _w ^B (cm ³ /cm ³)	Stratum B soil organic carbon fraction, $f_{oc}^{\ B}$ (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm³/cm³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
	soil type	soil dry bulk density, r _b ^A (g/cm ³)	soil total porosity, n ^A (unitless)	soil water-filled porosity, q _w ^A (cm³/cm³)	soil organic carbon fraction, $f_{oc}^{\ A}$ (unitless)	SCS soil type	soil dry bulk density, r _b ^B (g/cm ³)	soil total porosity, n ^s (unitless)	Stratum B soil water-filled porosity, q _w ^B (cm ³ /cm ³)	Stratum B soil organic carbon fraction, $f_{oc}^{\ B}$ (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm³/cm³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê	S ENTER Enclosed space	soil dry bulk density, r,b (g/cm³) 1.66 ENTER Soil-bldg.	soil total porosity, n^ (unitless) 0.375 ENTER Enclosed space	soil water-filled porosity, qw^ (cm³/cm³) 0.054 ENTER Enclosed space	soil organic carbon fraction, foc. (unitless) 0.002 ENTER Enclosed	SCS soil type S ENTER Floor-wall	soil dry bulk density, r, B (g/cm³) 1.66 ENTER Indoor	soil total porosity, n ^s (unitless)	Stratum B soil water-filled porosity, qw (cm³/cm³) 0.054 ENTER Average vapor flow rate into bldg	Stratum B soil organic carbon fraction, foc B (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm³/cm³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor	soil dry bulk density, r _b ^A (g/cm³) 1.66 ENTER Soil-bldg, pressure	soil total porosity, n° (unitless) 0.375 ENTER Enclosed space floor	soil water-filled porosity, q, of the company of th	soil organic carbon fraction, foc^A (unitless) 0.002 ENTER Enclosed space	SCS soil type S ENTER Floor-wall seam crack	soil dry bulk density, r _b ^B (g/cm³) 1.66 ENTER Indoor air exchange	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, que (cm³/cm³) 0.054 ENTER Average vapor flow rate into bldg OR	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness, L _{crack}	soil dry bulk density, rs^A (g/cm³) 1.66 ENTER Soil-bldg. pressure differential, DP	soil total porosity, no (unitless) 0.375 ENTER Enclosed space floor length, Ls	soil water-filled porosity, qw*, (cm*/cm*) 0.054 ENTER Enclosed space floor width, Ws	soil organic carbon fraction, for	SCS soil type S ENTER Floor-wall seam crack width, w	soil dry bulk density, r, ^B (g/cm ³) 1.66 ENTER Indoor air exchange rate, ER	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, que que que to de la company company company company de la company company company de la company	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness,	soil dry bulk density, r _b ^A (g/cm ³) 1.66 ENTER Soil-bldg. pressure differential,	soil total porosity, n^ (unitless) 0.375 ENTER Enclosed space floor length,	soil water-filled porosity, qw' (cm³/cm³) 0.054 ENTER Enclosed space floor width,	soil organic carbon fraction, foc (unitless) 0.002 ENTER Enclosed space height,	SCS soil type S ENTER Floor-wall seam crack width,	soil dry bulk density, r, B (g/cm³) 1.66 ENTER Indoor air exchange rate,	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, qw (cm³/cm³) 0.054 ENTER Average vapor flow rate into bldg OR eave blank to calcu	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness, L _{crack}	soil dry bulk density, rs^A (g/cm³) 1.66 ENTER Soil-bldg. pressure differential, DP	soil total porosity, no (unitless) 0.375 ENTER Enclosed space floor length, Ls	soil water-filled porosity, qw*, (cm*/cm*) 0.054 ENTER Enclosed space floor width, Ws	soil organic carbon fraction, for	SCS soil type S ENTER Floor-wall seam crack width, w	soil dry bulk density, r, ^B (g/cm ³) 1.66 ENTER Indoor air exchange rate, ER	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, que que que to de la company company company company de la company company company de la company	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness, Lenek (cm)	soil dry bulk density, r _b (g/cm³) 1.66 ENTER Soil-bldg, pressure differential, DP (g/cm-s²)	soil total porosity, n° (unitless) 0.375 ENTER Enclosed space floor length, L _B (cm)	soil water-filled porosity, qw' (cm³/cm³) 0.054 ENTER Enclosed space floor width, Ws (cm)	soil organic carbon fraction, foc. (unitless) 0.002 ENTER Enclosed space height, H _B (cm)	SCS soil type S ENTER Floor-wall seam crack width, w (cm) 0.1	soil dry bulk density, r _b r _b (g/cm³) 1.66 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, qw (cm³/cm²) 0.054 ENTER Average vapor flow rate into bidg OR eave blank to calcu Qsoil (L/m)	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness, Lorack (cm) 9 ENTER Averaging	soil dry bulk density, r b c density r b c density r b density r b density r b density r density r density r density r density	soil total porosity, n° (unitless) 0.375 ENTER Enclosed space floor length, Le (cm) 1000 ENTER	soil water-filled porosity, qw' (cm³/cm²) 0.054 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER	soil organic carbo fraction, foc (unitless) 0.002 ENTER Enclosed space height, H _B (cm) 244 ENTER Target	SCS soil type S ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard	soil dry bulk density, r _b r _b (g/cm³) 1.66 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, qw (cm³/cm²) 0.054 ENTER Average vapor flow rate into bidg OR eave blank to calcu Qsoil (L/m)	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness, Lorack (cm)	soil dry bulk density, r _b ^A (g/cm³) 1.66 ENTER Soil-bldg. pressure differential, DP (g/cm-s²) 40 ENTER Averaging time for	soil total porosity, n° (unitless) 0.375 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER Exposure	soil water-filled porosity, qw^3, (cm³/cm³) 0.054 ENTER Enclosed space floor width, WB (cm) 1000 ENTER Exposure	soil organic carbo fraction, facton fraction, facton, facton, facton fraction, facton fraction, facton fact	SCS soil type SENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for	soil dry bulk density, r _b r _b (g/cm³) 1.66 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, qw (cm³/cm²) 0.054 ENTER Average vapor flow rate into bidg OR eave blank to calcu Qsoil (L/m)	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness, Larack (cm) 9 ENTER Averaging time for carcinogens,	soil dry bulk density, r ₆ A (g/cm³) 1.66 ENTER Soil-bldg. pressure differential, DP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens,	soil total porosity, n° (unitless) 0.375 ENTER Enclosed space floor length, La (cm) 1000 ENTER Exposure duration,	soil water-filled porosity, qw', (cm'/cm') 0.054 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER Exposure frequency,	soil organic carbo fraction, for foot of factors of factors of foot of	SCS soil type SENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens,	soil dry bulk density, r _b r _b (g/cm³) 1.66 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, qw (cm³/cm²) 0.054 ENTER Average vapor flow rate into bidg OR eave blank to calcu Qsoil (L/m)	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness, Lorack (cm)	soil dry bulk density, r _b ^A (g/cm³) 1.66 ENTER Soil-bldg. pressure differential, DP (g/cm-s²) 40 ENTER Averaging time for	soil total porosity, n° (unitless) 0.375 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER Exposure	soil water-filled porosity, qw^3, (cm³/cm³) 0.054 ENTER Enclosed space floor width, WB (cm) 1000 ENTER Exposure	soil organic carbo fraction, facton fraction, facton, facton, facton fraction, facton fraction, facton fact	SCS soil type SENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for	soil dry bulk density, r _b r _b (g/cm³) 1.66 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, qw (cm³/cm²) 0.054 ENTER Average vapor flow rate into bidg OR eave blank to calcu Qsoil (L/m)	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness, Larack (cmi) 9 ENTER Averaging time for carcinogens, AT _C (yrs)	soil dry bulk density, r b 1.66 ENTER Soil-bidg, pressure differential, DP (g/cm-s') 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	soil total porosity, n° (unitless) 0.375 ENTER Enclosed space floor length, La (cm) 1000 ENTER Exposure duration, ED (yrs)	soil water-filled porosity, qw', (cm³/cm²) 0.054 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER Exposure frequency, EF (days/yr)	soil organic carbo fraction, for foction fraction, foction fraction, foction foction for foction foction for foction foction for foction foction for foction focti	SCS soil type SENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	soil dry bulk density, r _b r _b (g/cm³) 1.66 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, qw (cm³/cm²) 0.054 ENTER Average vapor flow rate into bidg OR eave blank to calcu Qsoil (L/m)	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)
ê MORE	S ENTER Enclosed space floor thickness, Lorack (cm) 9 ENTER Averaging time for carcinogens, ATc	soil dry bulk density, r b (g/cm³) 1.66 ENTER Soil-bldg. pressure differential, pp (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC}	soil total porosity, n° (unitless) 0.375 ENTER Enclosed space floor length, Ls (cm) 1000 ENTER Exposure duration, ED	soil water-filled porosity, qw' (cm³/cm³) 0.054 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER Exposure frequency, EF	soil organic carbo fraction, for factor, f	SCS soil type SENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ	soil dry bulk density, r _b r _b (g/cm³) 1.66 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n° (unitless)	Stratum B soil water-filled porosity, qw (cm³/cm²) 0.054 ENTER Average vapor flow rate into bidg OR eave blank to calcu Qsoil (L/m)	Stratum B soil organic carbon fraction, f _{o.b} (unitless)	Stratum C SCS soil type	Stratum C soil dry bulk density, r _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	Stratum C soil water-filled porosity, q _w ^C (cm ³ /cm ³)	Stratum C soil organic carbon fraction, $f_{oc}^{\ \ C}$ (unitless)

Attachment C-1: Soil Vapor Attenuation Factors for Vapor Intrusion -- Indoor Commercial/Industrial Worker, Chemical Properties Sheet

	Diffusivity in air, D _a	Diffusivity in water, D _w	Henrys law constant at reference temperature, H	Henrys law constant reference temperature, T _R	Enthalpy of vaporization at the normal boiling point, DH _{v,b}	Normal boiling point, T _B	Critical temperature, T _C	Organic carbon partition coefficient, K _{oc}	Pure component water solubility, S	Unit risk factor, URF	Reference conc., RfC	Physical state at soil temperature
	(cm ² /s)	(cm ² /s)	(atm-m ³ /mol)	(°C)	(cal/mol)	(°K)	(°K)	(cm ³ /g)	(mg/L)	$(mg/m^3)^{-1}$	(mg/m ³)	(S,L,G)
		ı	1	1		1	1	ı	ı	ı		
Chloroform	1.04E-01	1.00E-05	3.66E-03	25	6,988	334.32	536.40	3.98E+01	7.92E+03	5.3E-06	3.0E-01	L
1,2-Dichloroethane	1.04E-01	9.90E-06	9.77E-04	25	7,643	356.65	561.00	1.74E+01	8.52E+03	2.2E-05	0.0E+00	L
1,1-Dichloroethylene	9.00E-02	1.04E-05	2.60E-02	25	6,247	304.75	576.05	5.89E+01	2.25E+03	0.0E+00	7.0E-02	L
cis-1,2-Dichloroethylene	7.36E-02	1.13E-05	4.07E-03	25	7,192	333.65	544.00	3.55E+01	3.50E+03	0.0E+00	3.5E-02	L
Naphthalene	5.90E-02	7.50E-06	4.82E-04	25	10,373	491.14	748.40	2.00E+03	3.10E+01	0.0E+00	9.0E-03	S
Tetrachloroethylene	7.20E-02	8.20E-06	1.84E-02	25	8,288	394.40	620.20	1.55E+02	2.00E+02	5.9E-06	3.5E-02	L
Toluene	8.70E-02	8.60E-06	6.62E-03	25	7,930	383.78	591.79	1.82E+02	5.26E+02	0.0E+00	3.0E-01	L
1,1,1-Trichloroethane	7.80E-02	8.80E-06	1.72E-02	25	7,136	347.24	545.00	1.10E+02	1.33E+03	0.0E+00	2.2E+00	L
Trichloroethylene	7.90E-02	9.10E-06	1.03E-02	25	7,505	360.36	544.20	1.66E+02	1.47E+03	2.0E-06	6.0E-01	L
1,2,4-Trimethylbenzene	6.06E-02	7.92E-06	6.14E-03	25	9,369	442.30	649.17	1.35E+03	5.70E+01	0.0E+00	6.0E-03	L
1,3,5-Trimethylbenzene	6.02E-02	8.67E-06	5.87E-03	25	9,321	437.89	637.25	1.35E+03	2.00E+00	0.0E+00	6.0E-03	L
p-Xylene	7.69E-02	8.44E-06	7.64E-03	25	8,525	411.52	616.20	3.89E+02	1.85E+02	0.0E+00	7.0E-01	L
o-Xylene	8.70E-02	1.00E-05	5.18E-03	25	8,661	417.60	630.30	3.63E+02	1.78E+02	0.0E+00	7.0E-01	L
C5-C8 Aliphatics	1.00E-01	1.00E-05	8.00E-01	25	7,000	369.00	508.00	3.98E+03	5.40E+00	0.0E+00	7.0E-01	0.0E+00
C9-C18 Aliphatics	1.00E-01	1.00E-05	1.90E+00	25	7,000	473.00	568.90	2.51E+05	3.40E-02	0.0E+00	3.0E-01	0.0E+00
C9-C16 Aromatics	1.00E-01	1.00E-05	1.20E-02	25	9,321	473.00	637.00	2.51E+03	2.50E+01	0.0E+00	5.0E-02	0.0E+00

Attachment C-1: Soil Vapor Attenuation Factors for Vapor Intrusion -- Indoor Commercial/Industrial Worker, Intermediate Calculations Sheet

		•	Stratum A	Stratum B	Stratum C	Stratum A	Stratum A	Stratum A	Stratum A	Floor-			
		Source-	soil	soil	soil	effective	soil	soil	soil	wall	Initial soil	Bldg.	
	Exposure	building	air-filled	air-filled	air-filled	total fluid	intrinsic	relative air	effective vapor	seam	concentration	ventilation	
	duration,	separation,	porosity,	porosity,	porosity,	saturation,	permeability,	permeability,	permeability,	perimeter,	used,	rate,	
	t	L _T	q_a^A	q _a ^B	q _a ^C	S _{te}	k_i	k_{rg}	k_v	X _{crack}	C_R	Q _{building}	
	(sec)	(cm)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(mg/kg)	(cm ³ /s)	=			
Tour 1			0.004	0.004	0.450	0.000	1 4 045 07				L 0.00F 00		-
Chloroform 1,2-Dichloroethane	7.88E+08 7.88E+08	40 40	0.321	0.321 0.321	0.150 0.150	0.003 0.003	1.01E-07 1.01E-07	0.998 0.998	1.01E-07 1.01E-07	4,000 4,000	0.00E+00 0.00E+00	6.78E+04 6.78E+04	
1,1-Dichloroethylene	7.88E+08	40	0.321 0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	-
cis-1,2-Dichloroethylene	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	
Naphthalene	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	
Tetrachloroethylene	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	
Toluene	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	
1,1,1-Trichloroethane	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	
Trichloroethylene	7.88E+08 7.88E+08	40 40	0.321	0.321	0.150 0.150	0.003	1.01E-07 1.01E-07	0.998 0.998	1.01E-07 1.01E-07	4,000 4,000	0.00E+00 0.00E+00	6.78E+04 6.78E+04	
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	7.88E+08	40	0.321 0.321	0.321 0.321	0.150	0.003 0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	-
p-Xylene	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	
o-Xylene	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	
C5-C8 Aliphatics	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	
C9-C18 Aliphatics	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04]
C9-C16 Aromatics	7.88E+08	40	0.321	0.321	0.150	0.003	1.01E-07	0.998	1.01E-07	4,000	0.00E+00	6.78E+04	j
	Area of							Stratum	Stratum	Stratum	Total		
	enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	A	Stratum	C	overall		
	space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	effective	effective	effective	Diffusion	Convection
	below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	diffusion	diffusion	diffusion	path	path
	grade,	ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	coefficient,	coefficient,	coefficient,	length,	length,
	A _B	h	Z _{crack}	$DH_{v,TS}$	H _{TS}	H' _{TS}	m _{TS}	D ^{eff} _A	D ^{eff} _B	D ^{eff} _C	D ^{eff} _T	L _d	L_p
	(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm)	(cm)
Chloroform	1.00E+06	4.00E-04	9	7,429	3.22E-03	1.33E-01	1.79E-04	1.68E-02	1.68E-02	2.09E-03	2.67E-03	40	9
1,2-Dichloroethane	1.00E+06	4.00E-04	9	8,390	8.46E-04	3.49E-02	1.79E-04	1.68E-02	1.68E-02	2.09E-03	2.68E-03	40	9
1,1-Dichloroethylene	1.00E+06	4.00E-04	9	6,313	2.34E-02	9.65E-01	1.79E-04	1.45E-02	1.45E-02	1.80E-03	2.31E-03	40	9
cis-1,2-Dichloroethylene Naphthalene	1.00E+06 1.00E+06	4.00E-04 4.00E-04	9	7,612 12,789	3.57E-03 3.87E-04	1.47E-01 1.60E-02	1.79E-04 1.79E-04	1.19E-02 9.54E-03	1.19E-02 9.54E-03	1.48E-03 1.19E-03	1.89E-03 1.53E-03	40 40	9
Tetrachloroethylene	1.00E+06	4.00E-04 4.00E-04	9	9,431	1.56E-02	6.45E-01	1.79E-04 1.79E-04	1.16E-02	9.54E-03 1.16E-02	1.19E-03 1.44E-03	1.85E-03	40	9
Toluene	1.00E+06	4.00E-04	9	9,023	5.67E-03	2.34E-01	1.79E-04	1.41E-02	1.41E-02	1.75E-03	2.23E-03	40	9
1,1,1-Trichloroethane	1.00E+06	4.00E-04	9	7,754	1.50E-02	6.20E-01	1.79E-04	1.26E-02	1.26E-02	1.56E-03	2.00E-03	40	9
Trichloroethylene	1.00E+06	4.00E-04	9	8,407	8.89E-03	3.67E-01	1.79E-04	1.28E-02	1.28E-02	1.58E-03	2.03E-03	40	9
1,2,4-Trimethylbenzene	1.00E+06	4.00E-04	9	11,541	5.04E-03	2.08E-01	1.79E-04	9.80E-03	9.80E-03	1.22E-03	1.56E-03	40	9
1,3,5-Trimethylbenzene	1.00E+06 1.00E+06	4.00E-04	9	11,521	4.82E-03	1.99E-01 2.65E-01	1.79E-04 1.79E-04	9.73E-03	9.73E-03	1.21E-03 1.54E-03	1.55E-03 1.98E-03	40 40	9
p-Xylene o-Xylene	1.00E+06	4.00E-04 4.00E-04	9	10,107 10,268	6.42E-03 4.34E-03	2.65E-01 1.79E-01	1.79E-04 1.79E-04	1.24E-02 1.41E-02	1.24E-02 1.41E-02	1.54E-03 1.75E-03	1.98E-03 2.23E-03	40	9
C5-C8 Aliphatics	1.00E+06	4.00E-04	9	8.336	6.93E-01	2.86E+01	1.79E-04	1.62E-02	1.62E-02	2.01E-03	2.57E-03	40	9
C9-C18 Aliphatics	1.00E+06	4.00E-04	9	10,761	1.58E+00	6.52E+01	1.79E-04	1.62E-02	1.62E-02	2.01E-03	2.57E-03	40	9
C9-C16 Aromatics	1.00E+06	4.00E-04	9	12,596	9.67E-03	3.99E-01	1.79E-04	1.62E-02	1.62E-02	2.01E-03	2.57E-03	40	9
					0 1		Exponent of	Infinite					_
	Soil-water	Course		Average	Crack effective		equivalent foundation	source	Infinite source			Time for	Exposure duration >
	partition	Source vapor	Crack	vapor flow rate	diffusion	Area of	Peclet	indoor attenuation	bldg.	Finite	Finite	Time for source	time for
	coefficient,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,	source	source	depletion,	source
	K _d	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	A _{crack}	exp(Pe ^t)	a	C _{building}	b term	y term	t _D	depletion
	(cm ³ /g)	(mg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(mg/m ³)	(unitless)	(sec) ⁻¹	(sec)	(YES/NO)
			` /				,	,		,		/	
Chloroform	7.96E-02	0.00E+00	0.10	8.33E+01	1.68E-02	4.00E+02	2.72E+48	5.47E-04	0.00E+00	NA	NA	NA	NA
1,2-Dichloroethane	3.48E-02	0.00E+00	0.10	8.33E+01	1.68E-02	4.00E+02	2.72E+48	5.48E-04	0.00E+00	NA	NA	NA	NA
1,1-Dichloroethylene	1.18E-01	0.00E+00	0.10	8.33E+01	1.45E-02	4.00E+02	9.30E+55	5.03E-04	0.00E+00	NA	NA NA	NA	NA
cis-1,2-Dichloroethylene	7.10E-02	0.00E+00	0.10	8.33E+01	1.19E-02	4.00E+02	2.75E+68	4.45E-04	0.00E+00	NA NA	NA NA	NA NA	NA NA
Naphthalene Tetrachloroethylene	4.00E+00 3.10E-01	0.00E+00 0.00E+00	0.10 0.10	8.33E+01 8.33E+01	9.54E-03 1.16E-02	4.00E+02 4.00E+02	2.37E+85 9.13E+69	3.86E-04 4.39E-04	0.00E+00 0.00E+00	NA NA	NA NA	NA NA	NA NA
Toluene	3.64E-01	0.00E+00	0.10	8.33E+01	1.41E-02	4.00E+02 4.00E+02	7.91E+57	4.93E-04	0.00E+00	NA NA	NA NA	NA NA	NA NA
1,1,1-Trichloroethane	2.20E-01	0.00E+00	0.10	8.33E+01	1.26E-02	4.00E+02	3.79E+64	4.61E-04	0.00E+00	NA NA	NA NA	NA NA	NA NA
Trichloroethylene	3.32E-01	0.00E+00	0.10	8.33E+01	1.28E-02	4.00E+02	5.78E+63	4.65E-04	0.00E+00	NA	NA	NA	NA
1,2,4-Trimethylbenzene	2.70E+00	0.00E+00	0.10	8.33E+01	9.80E-03	4.00E+02	1.32E+83	3.91E-04	0.00E+00	NA	NA	NA	NA
1,3,5-Trimethylbenzene	2.70E+00	0.00E+00	0.10	8.33E+01	9.73E-03	4.00E+02	4.72E+83	3.90E-04	0.00E+00	NA	NA	NA	NA
p-Xylene	7.78E-01	0.00E+00	0.10	8.33E+01	1.24E-02	4.00E+02	3.18E+65	4.57E-04	0.00E+00	NA	NA NA	NA	NA
o-Xylene	7.26E-01	0.00E+00 0.00E+00	0.10	8.33E+01	1.41E-02	4.00E+02	7.91E+57	4.93E-04	0.00E+00	NA NA	NA NA	NA NA	NA NA
C5-C8 Aliphatics C9-C18 Aliphatics	7.96E+00 5.02E+02	0.00E+00 0.00E+00	0.10	8.33E+01 8.33E+01	1.62E-02 1.62E-02	4.00E+02 4.00E+02	2.35E+50 2.35E+50	5.35E-04 5.35E-04	0.00E+00 0.00E+00	NA NA	NA NA	NA NA	NA NA
C9-C16 Ailphatics	5.02E+02 5.02E+00	0.00E+00 0.00E+00	0.10	8.33E+01	1.62E-02	4.00E+02 4.00E+02	2.35E+50 2.35E+50	5.35E-04 5.35E-04	0.00E+00	NA NA	NA NA	NA NA	NA NA
					02			v .					

ATTACHMENT D-1 SUMMARY OF INPUT PARAMETERS Risk-Based Screening Levels for Vapor Intrusion from Groundwater

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Parameter	Value	Rationale
Groundwater Parameters	Value	Tuttorius
Depth Below Grade to Water Table	4572	Site-specific: Depth to groundwater (150 feet) based on the logs of borings 125 and 126.
L _{WT}	4372	Oile-specific. Deput to groundwater (130 feet) based on the logs of bornings 123 and 120.
(cm)		
Soil Parameters		
	1	
Average Soil/Groundwater Temperature,	22	Default: Highest California average annual soil temperature as provided by USEPA,
T_s		2003 and OEHHA, 2005.
(°C)		
Stratum A Soil Properties		
SCS Soil Type	Sand	Site-specific: Soil types provided in the logs of borings 125 and 126 included sands and silts
(unitless)		from the surface to approximately 54 feet bgs, where clays were encountered
		To be conservative, assumed this combined stratum, from 0 to 54 feet bgs,
		was sand.
Thickness,	1646	Site-specific: Depth of initial sand/silt stratum based on the logs of borings 125 and 126.
h _A		
(cm)		
Soil Dry Bulk Density,	1.66	Default: Default value for sand SCS soil type provided by USEPA, 2003 and OEHHA,
ρ_b^A		2005.
_		
(g/cm³)	0.275	Default: Default value for early SCS coil time provided by LISERA 2002 and OFFILIA
Soil Total Porosity,	0.375	Default: Default value for sand SCS soil type provided by USEPA, 2003 and OEHHA,
n ^A		2005.
(unitless)	0.051	Defection of the second of the
Soil Water-Filled Porosity,	0.054	Default: Default value for sand SCS soil type provided by USEPA, 2003 and OEHHA,
$\theta_{w}^{\;A}$		2005.
(cm ³ /cm ³)		
Stratum B Soil Properties		
SCS Soil Type	Clay	Site-specific: Clay soil type provided in the logs of borings 125 and 126 at approximately 53
(unitless)	•	or 54 feet bgs. In boring 125, clays were encountered from 54 to 64 feet bgs,
		and also from 85 to 89 feet bgs (for a combined 14 feet of clay), with sands
		and silts in between. In boring 126, clays were encountered from 53 to 63 fee
		bgs, 104 to 111 feet bgs, and 121 to 125 feet bgs (for a combined 21 feet of
		clay), with sands and silts in between. To be conservative, Stratum B was
		assumed to be only 14 feet of clay (based on boring 125), extending from 54
		to 68 feet bgs.
Thickness,	426.72	Site-specific: 14 feet of clay (combined) based on boring 125
h _B		
(cm)		
Soil Dry Bulk Density,	1.43	Default: Default value for clay SCS soil type provided by USEPA, 2003 and OEHHA,
$\rho_{b}{}^{B}$		2005.
(g/cm³)	0.459	Default: Default value for clay SCS soil type provided by USEPA, 2003 and OEHHA,
Soil Total Porosity,	0.459	
n ^B		2005.
(unitless)	0.045	Defects Defects of a standard COO as the second State HOEDA COOR and OFILIA
Soil Water-Filled Porosity,	0.215	Default: Default value for clay SCS soil type provided by USEPA, 2003 and OEHHA,
$\theta_{\sf w}^{\;\sf B}$		2005.
(cm ³ /cm ³)		
Stratum C Soil Properties		
SCS Soil Type	Sand	Site-specific: Soil types provided in the logs of borings 125 and 126 below clay to
(unitless)		groundwater included sands and silts. To be conservative, assumed the
		combined stratum was sand.
Thickness,	2499.28	Site-specific: Assumed the lower stratum extended from 68 feet to groundwater (82 feet).
h _A		
(cm)		
Soil Dry Bulk Density,	1.66	Default: Default value for sand SCS soil type provided by USEPA, 2003 and OEHHA,
3.	1.00	2005.
$ ho_{b}^{A}$		2000.
(g/cm ³)		D (D (
	0.375	Default: Default value for sand SCS soil type provided by USEPA, 2003 and OEHHA,
Soil Total Porosity,		
Soil Total Porosity, n ^A		2005.
n ^A (unitless)		
n ^A (unitless) Soil Water-Filled Porosity,	0.054	Default: Default value for sand SCS soil type provided by USEPA, 2003 and OEHHA,
n ^A (unitless)	0.054	

ATTACHMENT D-1 SUMMARY OF INPUT PARAMETERS Risk-Based Screening Levels for Vapor Intrusion from Groundwater

Former Pechiney Cast Plate, Inc. Facility Vernon, California

Parameter	Value	Rationale
Building Parameters		
Enclosed Space Floor Thickness,	9	Default: Default value provided by USEPA, 2002, DTSC, 2005, and OEHHA, 2005.
L_{crack}		
(cm)		
Soil-Building Pressure Differential	40	Default: Default value provided by USEPA, 2002, DTSC, 2005, and OEHHA, 2005.
ΔΡ		
(g/cm-s ²)		
Enclosed Space Floor Length, Width, Height	Length: 1000	Default: Default values provided by USEPA, 2002, DTSC, 2005, and OEHHA, 2005.
L_B, W_B, H_B	Width: 1000	
(cm)	Height: 244	
Floor-Wall Seam Crack Width,	0.1	Default: Default value provided by USEPA, 2002 and OEHHA, 2005.
w		
(cm)		
Indoor Air Exchange Rate,	1	Default: Default value for commercial/industrial buildings provided by DTSC, 2005 and
ER		OEHHA, 2005.
(1/hr)		
Average Vapor Flow Rate into Building	5	Default: Default value provided by USEPA, 2002 and OEHHA, 2005.
Q_{soil}		
(L/m)		
Crack-to-Total Area Ratio	0.005	Default: DTSC, 2005.
η		
(unitless)		
Exposure Parameters		
Averaging Time for Carcinogens,	70	Default: Default value provided by USEPA, 1991 and OEHHA, 2005 for
AT _c		commercial/industrial workers.
(yrs)		
Averaging Time for Noncarcinogens,	25	Default: Default value provided by USEPA, 1991 and OEHHA, 2005 for
AT _{nc}		commercial/industrial workers.
(yrs)		
Exposure Duration,	25	Default: Default value provided by USEPA, 1991 and OEHHA, 2005 for
ED		commercial/industrial workers.
(yrs)		
Exposure Frequency,	250	Default: Default value provided by USEPA, 1991 and OEHHA, 2005 for
EF		commercial/industrial workers.
(days/yr)		

References:

Department of Toxic Substances Control (DTSC), 2005, Guidance for the Evaluation and Migration of Subsurface Vapor Intrusion to Indoor Air, Interim Final, California. Environmental Protection Agency, February 7.

Office of Environmental Health Hazard Assessment (OEHHA), 2005, Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil, California Environmental Protection Agency, January.

U.S. Environmental Protection Agency (USEPA), 1991, Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors, Office of Emergence and Remedial Response, Washington, D.C.

USEPA, 2002, "Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance)," Draft Federal Register, November 29.

USEPA. 2003. "Draft User's Guide for Evaluating Subsurface Vapor Intrusion Into Buildings." Office of Emergency and Remedial Response. March 14.

Attachment D-2: Risk-Based Screening Levels for Vapor Intrusion from Groundwater -- Indoor Commercial/Industrial Worker, Data Entry Sheet

GW-ADV CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Geomatrix Consultants, Inc. Version 3.1; 02/04 modified by CAK; 11/05 YES Mult. Chemical; version 3.1.2 Reset to OR Defaults CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES **ENTER** U.S. EPA or **ENTER ENTER** Cal-EPA Initial Chemical groundwater Cal-EPA CAS No. conc., (numbers only, C_{W} no dashes) $(\mu g/L)$ Chemical 71432 2.80E+00 Benzene 67663 1.05E+02 Chloroform 75354 1.20E+00 1,1-Dichloroethylene 107062 4.10E+02 1,2-Dichloroethane 75092 1.00E+01 Methylene chloride 100414 8.50E-01 Ethylbenzene 127184 4.60E+00 Tetrachloroethylene 108883 2.90E+00 Toluene 79016 4.20E+02 Trichloroethylene 106423 3.90E+00 p-Xylene for m,p-xylenes 95476 2.00E+00 o-Xylene 9999992 1.00E+00 C5-C8 Aliphatics 9999994 1.00E+00 C9-C18 Aliphatics 9999996 1.00E+00 C9-C16 Aromatics **ENTER ENTER ENTER ENTER ENTER** ENTER ENTER **ENTER ENTER ENTER** Totals must add up to value of L_{WT} (cell G28) Depth Soil MORE below grade Average Thickness Thickness stratum A User-defined soil/ to bottom Depth Thickness of soil of soil Soil SCS stratum A SCS groundwater of enclosed below grade of soil stratum B, stratum C, stratum soil type soil vapor temperature, space floor, to water table, stratum A, (Enter value or 0) (Enter value or 0) directly above soil type (used to estimate OR permeability, T_{S} L_{F} L_{WT} h_{A} h_{C} water table, directly above soil vapor h_B k_v (°C) (cm²) (cm) (cm) (cm) (cm) (cm) (Enter A, B, or C) water table permeability) 22 9 4572 1646 426.72 2499.28 С S S

14

82

150

Attachment D-2: Risk-Based Screening Levels for Vapor Intrusion from Groundwater -- Indoor Commercial/Industrial Worker, Data Entry Sheet

MORE ↓	ENTER Stratum A SCS soil type Lookup Soil Parameters	ENTER Stratum A soil dry bulk density, ρ_b^A (g/cm³)	ENTER Stratum A soil total porosity, n ^A (unitless)	ENTER Stratum A soil water-filled porosity, θ_w^A (cm^3/cm^3)	ENTER Stratum B SCS soil type Lookup Soil Parameters	ENTER Stratum B soil dry bulk density, Pb (g/cm³)	ENTER Stratum B soil total porosity, n ^B (unitless)	ENTER Stratum B soil water-filled porosity, θ_w^B (cm^3/cm^3)	ENTER Stratum C SCS soil type Lookup Soil Parameters	ENTER Stratum C soil dry bulk density, $\rho_b^{\ C}$ (g/cm ³)	ENTER Stratum C soil total porosity, n ^C (unitless)	ENTER Stratum C soil water-filled porosity, θ_w^c (cm^3/cm^3)
	S	1.66	0.375	0.054	CL	1.43	0.459	0.215	S	1.66	0.375	0.054
MORE ↓	ENTER Enclosed space floor thickness, L _{crack} (cm)	ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²)	ENTER Enclosed space floor length, LB (cm)	ENTER Enclosed space floor width, W _B (cm)	ENTER Enclosed space height, H _B (cm)	ENTER Floor-wall seam crack width, w (cm)	ENTER Indoor air exchange rate, ER (1/h)		ENTER Average vapor flow rate into bldg OR ave blank to calcu Q _{soil} (L/m)			
	9	40	1000	1000	244	0.1	1	7	5	7		
MORE ¥	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)	ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)						
	70	25	25	250	1.0E-06	1						
END						ulate risk-based r concentration.						

Attachment D-2: Risk-Based Screening Levels for Vapor Intrusion from Groundwater Indoor Commercial/Industrial Worker, Chemical Properties Sheet

	Diffusivity in air,	Diffusivity in water,	Henry's law constant at reference temperature, H	Henry's law constant reference temperature,	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$	Normal boiling point,	Critical temperature,	Organic carbon partition coefficient,	Pure component water solubility, S	Unit risk factor, URF	Reference conc., RfC
	(cm ² /s)	(cm ² /s)	(atm-m ³ /mol)	(°C)	(cal/mol)	(°K)	(°K)	(cm ³ /g)	(mg/L)	(μg/m ³) ⁻¹	(mg/m ³)
Benzene	8.80E-02	9.80E-06	5.54E-03	25	7,342	353.24	562.16	5.89E+01	1.79E+03	2.9E-05	6.0E-02
Chloroform	1.04E-01	1.00E-05	3.66E-03	25	6,988	334.32	536.40	3.98E+01	7.92E+03	5.3E-06	3.0E-01
1,1-Dichloroethylene	9.00E-02	1.04E-05	2.60E-02	25	6,247	304.75	576.05	5.89E+01	2.25E+03	0.0E+00	7.0E-02
1.2-Dichloroethane	1.04E-01	9.90E-06	9.77E-04	25	7,643	356.65	561.00	1.74E+01	8.52E+03	2.1E-05	0.0E+00
Methylene chloride	1.04E-01	1.17E-05	2.18E-03	25	6,706	313.00	510.00	1.17E+01	1.30E+04	1.0E-06	4.0E-01
Ethylbenzene	7.50E-02	7.80E-06	7.86E-03	25	8,501	409.34	617.20	3.63E+02	1.69E+02	2.5E-06	2.0E+00
Tetrachloroethylene	7.30E-02 7.20E-02	8.20E-06	1.84E-02	25	8,288	394.40	620.20	1.55E+02	2.00E+02	5.9E-06	3.5E-02
Toluene	8.70E-02	8.60E-06	6.62E-03	25	7,930	383.78	591.79	1.82E+02	5.26E+02	0.0E+00	3.0E-01
Trichloroethylene	7.90E-02	9.10E-06	1.03E-02	25	7,505	360.36	544.20	1.66E+02	1.47E+03	2.0E-06	6.0E-01
p-Xylene	7.69E-02	8.44E-06	7.64E-03	25	8,525	411.52	616.20	3.89E+02	1.85E+02	0.0E+00	7.0E-01
o-Xylene	8.70E-02	1.00E-05	5.18E-03	25	8,661	417.60	630.30	3.63E+02	1.78E+02	0.0E+00	7.0E-01
C5-C8 Aliphatics	1.00E-01	1.00E-05	8.00E-01	25	7,000	369.00	508.00	3.98E+03	5.40E+00	0.0E+00	7.0E-01
C9-C18 Aliphatics	1.00E-01	1.00E-05	1.90E+00	25	7,000	473.00	568.90	2.51E+05	3.40E-02	0.0E+00	3.0E-01
C9-C16 Aromatics	1.00E-01	1.00E-05	1.20E-02	25	9,321	473.00	637.00	2.51E+03	2.50E+01	0.0E+00	5.0E-02

Air-filled

porosity in

Water-filled

porosity in

Floor-

wall

Total

porosity in

Thickness of

Attachment D-2: Risk-Based Screening Levels for Vapor Intrusion from Groundwater -- Indoor Commercial/Industrial Worker, Intermediate Calculations Sheet

Stratum A

soil

Stratum A

soil

Stratum A

soil

Stratum A

effective

Stratum A

soil

Source-

Stratum B

soil

Stratum C

soil

	_	Source-	SOII	SOII	SOII	effective	SOII	SOII	SOII	I nickness of	porosity in	porosity in	porosity in	wali
	Exposure	building	air-filled	air-filled	air-filled	total fluid	intrinsic	relative air	effective vapor	capillary	capillary	capillary	capillary	seam
	duration,	separation,	porosity,	porosity,	porosity,	saturation,	permeability,	permeability,	permeability,	zone,	zone,	zone,	zone,	perimeter,
	τ	L_T	θ_a^A	θ_a^B	$\theta_a^{\ C}$	S _{te}	k _i	k_{rg}	k _v	L _{cz}	n _{cz}	$\theta_{a,cz}$	$\theta_{w,cz}$	X_{crack}
	(sec)	(cm)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)			
Benzene	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
Chloroform	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
1,1-Dichloroethylene	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
1,2-Dichloroethane	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
Methylene chloride	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
Ethylbenzene	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
Tetrachloroethylene	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
Toluene	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
Trichloroethylene	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
p-Xylene	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
o-Xylene	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
C5-C8 Aliphatics	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
C9-C18 Aliphatics	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
C9-C16 Aromatics	7.88E+08	4563	0.321	0.244	0.321	0.003	1.01E-07	0.998	1.01E-07	30.00	0.375	0.165	0.210	4,000
		Area of							Stratum	Stratum	Stratum	Capillary	Total	
		enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	Α	В	С	zone	overall	
	Bldg.	space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	effective	effective	effective	effective	Diffusion
	ventilation	below	area	below	ave. groundwater	ave. groundwater	ave. groundwate	ave. soil	diffusion	diffusion	diffusion	diffusion	diffusion	path
	rate,	grade,	ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	coefficient,	coefficient,	coefficient,	coefficient,	length,
	$Q_{building}$	A_B	η	Z_{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ_{TS}	D ^{eff} _A	D ^{eff} _B	D ^{eff} C	D ^{eff} _{cz}	D ^{eff} _T	L_d
	(cm ³ /s)	(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm)
				` '	, ,	· · · · · · · · · · · · · · · · · · ·		, ,						
Benzene	6.78E+04	1.00E+06	5.00E-03	9	7,998	4.83E-03	1.99E-01	1.79E-04	1.42E-02	3.81E-03	1.42E-02	1.55E-03	1.09E-02	4563
Chloroform	6.78E+04	1.00E+06	5.00E-03	9	7,429	3.22E-03	1.33E-01	1.79E-04	1.68E-02	4.50E-03	1.68E-02	1.84E-03	1.28E-02	4563
1,1-Dichloroethylene	6.78E+04	1.00E+06	5.00E-03	9	6,313	2.34E-02	9.65E-01	1.79E-04	1.45E-02	3.90E-03	1.45E-02	1.59E-03	1.11E-02	4563
1,2-Dichloroethane	6.78E+04	1.00E+06	5.00E-03	9	8,390	8.46E-04	3.49E-02	1.79E-04	1.68E-02	4.51E-03	1.68E-02	1.84E-03	1.28E-02	4563
Methylene chloride	6.78E+04	1.00E+06	5.00E-03	9	6,906	1.94E-03	8.01E-02	1.79E-04	1.63E-02	4.38E-03	1.63E-02	1.79E-03	1.25E-02	4563
Ethylbenzene	6.78E+04	1.00E+06	5.00E-03	9	10,017	6.62E-03	2.73E-01	1.79E-04	1.21E-02	3.25E-03	1.21E-02	1.32E-03	9.26E-03	4563
Tetrachloroethylene	6.78E+04	1.00E+06	5.00E-03	9	9,431	1.56E-02	6.45E-01	1.79E-04	1.16E-02	3.12E-03	1.16E-02	1.27E-03	8.89E-03	4563
Toluene	6.78E+04	1.00E+06	5.00E-03	9	9,023	5.67E-03	2.34E-01	1.79E-04	1.41E-02	3.77E-03	1.41E-02	1.53E-03	1.07E-02	4563
Trichloroethylene	6.78E+04	1.00E+06	5.00E-03	9	8,407	8.89E-03	3.67E-01	1.79E-04	1.28E-02	3.42E-03	1.28E-02	1.39E-03	9.75E-03	4563
p-Xylene	6.78E+04	1.00E+06	5.00E-03	9	10,107	6.42E-03	2.65E-01	1.79E-04	1.24E-02	3.33E-03	1.24E-02	1.36E-03	9.49E-03	4563
o-Xylene	6.78E+04	1.00E+06	5.00E-03	9	10,268	4.34E-03	1.79E-01	1.79E-04	1.41E-02	3.77E-03	1.41E-02	1.54E-03	1.07E-02	4563
C5-C8 Aliphatics	6.78E+04	1.00E+06	5.00E-03	9	8,336	6.93E-01	2.86E+01	1.79E-04	1.62E-02	4.33E-03	1.62E-02	1.76E-03	1.23E-02	4563
C9-C18 Aliphatics	6.78E+04	1.00E+06	5.00E-03	9	10,761	1.58E+00	6.52E+01	1.79E-04	1.62E-02	4.33E-03	1.62E-02	1.76E-03	1.23E-02	4563
C9-C16 Aromatics	6.78E+04	1.00E+06	5.00E-03	9	12,596	9.67E-03	3.99E-01	1.79E-04	1.62E-02	4.33E-03	1.62E-02	1.76E-03	1.23E-02	4563
	30201		2.002 00		.2,000	0.0.2 00	0.002 0.	0= 01			02	02 00		

Attachment D-2: Risk-Based Screening Levels for Vapor Intrusion from Groundwater -- Indoor Commercial/Industrial Worker, Intermediate Calculations Sheet

	Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm²/s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (μg/m³) ⁻¹	Reference conc., RfC (mg/m ³)
-						T	1 1				
Benzene	9	1.99E+02	1.25	8.33E+01	1.42E-02	5.00E+03	3.80E+04	3.42E-05	6.81E-03	2.9E-05	6.0E-02
Chloroform	9	1.33E+02	1.25	8.33E+01	1.68E-02	5.00E+03	7.49E+03	4.02E-05	5.34E-03	5.3E-06	3.0E-01
1,1-Dichloroethylene	9	9.65E+02	1.25	8.33E+01	1.45E-02	5.00E+03	3.00E+04	3.49E-05	3.37E-02	NA	7.0E-02
1,2-Dichloroethane	9	3.49E+01	1.25	8.33E+01	1.68E-02	5.00E+03	7.49E+03	4.02E-05	1.40E-03	2.1E-05	NA
Methylene chloride	9	8.01E+01	1.25	8.33E+01	1.63E-02	5.00E+03	9.77E+03	3.91E-05	3.13E-03	1.0E-06	4.0E-01
Ethylbenzene	9	2.73E+02	1.25	8.33E+01	1.21E-02	5.00E+03	2.36E+05	2.92E-05	7.99E-03	2.5E-06	2.0E+00
Tetrachloroethylene	9	6.45E+02	1.25	8.33E+01	1.16E-02	5.00E+03	3.95E+05	2.81E-05	1.81E-02	5.9E-06	3.5E-02
Toluene	9	2.34E+02	1.25	8.33E+01	1.41E-02	5.00E+03	4.28E+04	3.38E-05	7.91E-03	NA	3.0E-01
Trichloroethylene	9	3.67E+02	1.25	8.33E+01	1.28E-02	5.00E+03	1.26E+05	3.07E-05	1.13E-02	2.0E-06	6.0E-01
p-Xylene	9	2.65E+02	1.25	8.33E+01	1.24E-02	5.00E+03	1.74E+05	3.00E-05	7.95E-03	NA	7.0E-01
o-Xylene	9	1.79E+02	1.25	8.33E+01	1.41E-02	5.00E+03	4.28E+04	3.38E-05	6.05E-03	NA	7.0E-01
C5-C8 Aliphatics	9	2.86E+04	1.25	8.33E+01	1.62E-02	5.00E+03	1.07E+04	3.87E-05	1.11E+00	NA	7.0E-01
C9-C18 Aliphatics	9	6.52E+04	1.25	8.33E+01	1.62E-02	5.00E+03	1.07E+04	3.87E-05	2.52E+00	NA	3.0E-01
C9-C16 Aromatics	9	3.99E+02	1.25	8.33E+01	1.62E-02	5.00E+03	1.07E+04	3.87E-05	1.54E-02	NA	5.0E-02

Attachment D-2: Risk-Based Screening Levels for Vapor Intrusion from Groundwater -- Indoor Commercial/Industrial Worker, Results Sheet

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

	Indoor exposure groundwater conc., carcinogen (µg/L)	Indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based indoor exposure groundwater conc., (μg/L)	Pure component water solubility, S (μg/L)	Final indoor exposure groundwater conc., (µg/L)
Benzene	2.1E+01	1.3E+04	2.07E+01	1.79E+06	2.07E+01
Chloroform	1.4E+02	8.2E+04	1.44E+02	7.92E+06	1.44E+02
1,1-Dichloroethylene	NA	3.0E+03	3.04E+03	2.25E+06	3.04E+03
1,2-Dichloroethane	1.4E+02	NA	1.39E+02	8.52E+06	1.39E+02
Methylene chloride	1.3E+03	1.9E+05	1.31E+03	1.30E+07	1.31E+03
Ethylbenzene	2.0E+02	3.7E+05	2.05E+02	1.69E+05	2.05E+02
Tetrachloroethylene	3.8E+01	2.8E+03	3.83E+01	2.00E+05	3.83E+01
Toluene	NA	5.5E+04	5.54E+04	5.26E+05	5.54E+04
Trichloroethylene	1.8E+02	7.8E+04	1.81E+02	1.47E+06	1.81E+02
p-Xylene	NA	1.3E+05	1.29E+05	1.85E+05	1.29E+05
o-Xylene	NA	1.7E+05	1.69E+05	1.78E+05	1.69E+05
C5-C8 Aliphatics	NA	9.2E+02	9.23E+02	5.40E+03	9.23E+02
C9-C18 Aliphatics	NA	1.7E+02	1.74E+02	3.40E+01	NOC
C9-C16 Aromatics	NA	4.7E+03	4.73E+03	2.50E+04	4.73E+03

Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA
NA	NA